39 resultados para SVM
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
During the petroleum well drilling operation many mechanical and hydraulic parameters are monitored by an instrumentation system installed in the rig called a mud-logging system. These sensors, distributed in the rig, monitor different operation parameters such as weight on the hook and drillstring rotation. These measurements are known as mud-logging records and allow the online following of all the drilling process with well monitoring purposes. However, in most of the cases, these data are stored without taking advantage of all their potential. On the other hand, to make use of the mud-logging data, an analysis and interpretationt is required. That is not an easy task because of the large volume of information involved. This paper presents a Support Vector Machine (SVM) used to automatically classify the drilling operation stages through the analysis of some mud-logging parameters. In order to validate the results of SVM technique, it was compared to a classification elaborated by a Petroleum Engineering expert. © 2006 IEEE.
Resumo:
Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting at the vibrating shale shakers. Here we proposed a system to analyse the cutting's concentration at the vibrating shale shakers, which can indicate problems during the petroleum well drilling process, such that the collapse of the well borehole walls. Cutting's images are acquired and sent to the data analysis module, which has as the main goal to extract features and to classify frames according to one of three previously classes of cutting's volume. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and efficiency. We used the Optimum-Path Forest (OPF), Artificial Neural Network using Multi layer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC) for this task. The first one outperformed all the remaining classifiers. Recall that we are also the first to introduce the OPF classifier in this field of knowledge. Very good results show the robustness of the proposed system, which can be also integrated with other commonly system (Mud-Logging) in order to improve the last one's efficiency.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A stochastic variational method is applied to calculate the binding energies and root-mean-square radii of 2, 3 and 4 alpha particles using an S-wave Ali-Bodmer potential. The results agree with other calculations. We discuss the application of the present method to study the universality in weakly-bound three and four-body systems in the context of ultracold atomic traps.
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).
Resumo:
As condições meteorológicas são determinantes para a produção agrícola; a precipitação, em particular, pode ser citada como a mais influente por sua relação direta com o balanço hídrico. Neste sentido, modelos agrometeorológicos, os quais se baseiam nas respostas das culturas às condições meteorológicas, vêm sendo cada vez mais utilizados para a estimativa de rendimentos agrícolas. Devido às dificuldades de obtenção de dados para abastecer tais modelos, métodos de estimativa de precipitação utilizando imagens dos canais espectrais dos satélites meteorológicos têm sido empregados para esta finalidade. O presente trabalho tem por objetivo utilizar o classificador de padrões floresta de caminhos ótimos para correlacionar informações disponíveis no canal espectral infravermelho do satélite meteorológico GOES-12 com a refletividade obtida pelo radar do IPMET/UNESP localizado no município de Bauru, visando o desenvolvimento de um modelo para a detecção de ocorrência de precipitação. Nos experimentos foram comparados quatro algoritmos de classificação: redes neurais artificiais (ANN), k-vizinhos mais próximos (k-NN), máquinas de vetores de suporte (SVM) e floresta de caminhos ótimos (OPF). Este último obteve melhor resultado, tanto em eficiência quanto em precisão.
Resumo:
The swallowing disturbers are defined as oropharyngeal dysphagia when present specifies signals and symptoms that are characterized for alterations in any phases of swallowing. Early diagnosis is crucial for the prognosis of patients with dysphagia and the potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. This study proposes a new framework for oropharyngeal dysphagia identification, having two main contributions: a new set of features extract from swallowing signal by discrete wavelet transform and the dysphagia classification by a novel pattern classifier called OPF. We also employed the well known SVM algorithm in the dysphagia identification task, for comparison purposes. We performed the experiments in two sub-signals: the first was the moment of the maximal peak (MP) of the signal and the second is the swallowing apnea period (SAP). The OPF final accuracy obtained were 85.2% and 80.2% for the analyzed signals MP and SAP, respectively, outperforming the SVM results. ©2008 IEEE.
Resumo:
This paper presents a novel, fast and accurate appearance-based method for infrared face recognition. By introducing the Optimum-Path Forest classifier, our objective is to get good recognition rates and effectively reduce the computational effort. The feature extraction procedure is carried out by PCA, and the results are compared to two other well known supervised learning classifiers; Artificial Neural Networks and Support Vector Machines. The achieved performance asserts the promise of the proposed framework. ©2009 IEEE.
Resumo:
In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.
Resumo:
Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.
Resumo:
Automatic inspection of petroleum well drilling has became paramount in the last years, mainly because of the crucial importance of saving time and operations during the drilling process in order to avoid some problems, such as the collapse of the well borehole walls. In this paper, we extended another work by proposing a fast petroleum well drilling monitoring through a modified version of the Optimum-Path Forest classifier. Given that the cutting's volume at the vibrating shale shaker can provide several information about drilling, we used computer vision techniques to extract texture informations from cutting images acquired by a digital camera. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and effciency. We used the Optimum-Path Forest (OPF), EOPF (Efficient OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP) Support Vector Machines (SVM), and a Bayesian Classifier (BC) to assess the robustness of our proposed schema for petroleum well drilling monitoring through cutting image analysis.
Resumo:
The effect of snoring on the cardiovascular system is not well-known. In this study we analyzed the Heart Rate Variability (HRV) differences between light and heavy snorers. The experiments are done on the full-whole-night polysomnography (PSG) with ECG and audio channels from patient group (heavy snorer) and control group (light snorer), which are gender- and age-paired, totally 30 subjects. A feature Snoring Density (SND) of audio signal as classification criterion and HRV features are computed. Mann-Whitney statistical test and Support Vector Machine (SVM) classification are done to see the correlation. The result of this study shows that snoring has close impact on the HRV features. This result can provide a deeper insight into the physiological understand of snoring. © 2011 CCAL.
Resumo:
The aim of this work is to present a modified Space Vector Modulation (SVM) suitable for Tri-state Three-phase inverters. A standard SVM algorithm and the Tri-state PWM (Pulse Width Modulation) are presented and their concept are mixed into the novel SVM. The proposed SVM is applied to a three-phase tri-state integrated Boost inverter, intended to Photovoltaic Energy Applications. The main features for this novel SVM are validated through simulations and also by experimental tests. The obtained results prove the feasibility of the proposal. © 2011 IEEE.