35 resultados para SUPERSATURATED SOLID SOLUTIONS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Magnetic properties of two spinel oxides solid solutions, Cul+xMn2-xO4 and Ni1+xMn2-xO4 are reported. These series are characterized by two magnetic transitions: the upper one, of ferrimagnetic type, occurs at about 85 K (for copper-based) and at 105-110 K (for nickel-based spinels), independently of the x-content: the lower transition may be related to a Neel-type collinear ordering and takes place at 30 and 45 K, respectively. Application of moderate fields (H > 250 Oe) make both transitions to merge into one broad maximum in the magnetization, which takes place at lower temperature when applying larger fields. Magnetization cycles with temperature (ZFC/FC) or field (loops) allowed us to well characterize the ordered state. The effective moment follows the expected behavior when manganese ions are being substituted by ions of lower magnetic moment (Ni(2+)andCU(2+)). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
(1-x)PbF2-(x)CdF2 solid solutions (with 0.1 less than or equal to x less than or equal to 0.5) were obtained by hyper-quenching the melt. Structural characteristics have been studied by X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). A cubic solid solution was obtained in which the lattice parameter decreases with increasing CdF2 content. High anionic disorder was evidenced from EXAFS investigations, whereas cations remain in the FCC arrangement. Pb L-3-edge EXAFS results illustrate clearly the occurrence of CdxPb1-xF2 mixed crystals by the introduction of Cd atoms in the second Pb coordination shell. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chemical and structural data are reported for platinum-palladium intermediates from two nuggets found at Corrego Bom Sucesso, Minas Gerais, Brazil. Three grains with simple stoichiometries (i.e. PtxPd1 -x with x ∼0.67, ∼0.5 and ∼0.33, which correspond to Pt2Pd, PtPd and PtPd2, respectively) were characterized by single-crystal X-ray diffraction and electron-probe microanalysis. In the absence of single-crystal data it might be tempting to hypothesize that such simple stoichiometries represent distinct mineral species, however structural analyses show that all of the phases are cubic and crystallize in space group Fm3̄m. They are, therefore, natural intermediates in the palladium-platinum solid solution. Reflectance and micro-hardness values are reported for the samples and a comparison with the pure metallic elements made. On the basis of information gained from the chemical and structural characterization it can be concluded that there is a complete solid solution between Pt and Pd in nature. These findings corroborate results from experiments on synthetic compounds. © 2013 The Mineralogical Society.
Resumo:
A series of four different powders ceria doped Ce1-xErxO2-delta (0.05 <= x <= 0.20) were synthesized by applying self-propagating reaction at room temperature (SPRT method). SPRT procedure is based on the self-propagating room temperature reaction between metal nitrates and sodium hydroxide, wherein the reaction is spontaneous and terminates extremely fast. The method is known to assure very precise stoichiometry of the final product in comparison with a tailored composition. XRPD, Raman spectroscopy, TEM and BET measurements were used to characterize the nanopowders at room temperature. It was shown that all obtained powders were single phase solid solutions with a fluorite-type crystal structure and all powder particles have nanometric size (about 3-4 nm). Densification was performed at 1550 degrees C, in an air atmosphere for 2 h. XRPD, SEM and complex impedance method measurements were carried out on sintered samples. Single phase form was evidenced for each sintered materials. The best value of conductivity at 700 degrees C amounted to 1.10 x 10(-2) Omega(-1) cm(-1) for Ce0.85Er0.O-3(2-delta) sample. Corresponding activation energies of conductivity amounted to 0.28 eV in the temperature range 500-700 degrees C. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Metals with a bcc crystalline structure such as Ti-13V-11Cr-3Al alloys have their physical properties significantly changed through the addition of interstitial elements such as oxygen and nitrogen. These metals can dissolve substantial amounts of interstitial elements forming solid solutions. Mechanical spectroscopy measurements constitute a powerful tool for studying interactions of these interstitial elements with other elements that make up the alloy. From these measurements, it is possible to obtain information regarding diffusion, interstitial concentration, interaction between interstitials, and other imperfections of the crystalline lattice, In this paper, Ti-13V-11Cr-3Al alloys with several amount of nitrogen, in a solid solution, were studied using mechanical spectroscopy (internal friction) measurements. The results presented complex internal friction spectra which were resolved in a series of constituent Debye peaks corresponding to different interactions and interstitial diffusion coefficients. Pre-exponential factors and activation energies were calculated for nitrogen in theses alloys.
Resumo:
The mechanical properties of metals with a body-centered cubic (bcc) structure, such as Nb, Ta, V, and their alloys, are modified with the introduction of interstitial impurities, such as O, N, C, or H. These metals can dissolve great amounts of O and N, for example, to form solid solutions. The interstitial solute atoms (ISA) in metals with a bcc structure occupy octahedral sites and cause local distortion with tetragonal symmetry. So ISA in these metals forms an elastic dipole that can align along one of the three cubic axis of the crystal. In the present paper, the torsion pendulum technique was employed for the investigation of various interactions among the metallic matrix and different interstitial solutes in the Nb-46wt%Ti alloy. From the relaxation spectra, we obtained the diffusion coefficients, pre-exponential factors, and activation energies for nitrogen in the Nb-46wt%Ti alloy.
Resumo:
When metals that present bcc crystalline structure receive the addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, they undergo significant changes in their physical properties because they are able to dissolve great amounts of those interstitial elements, and thus form solid solutions. Niobium and most of its alloys possess a bcc crystalline structure and, because Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this study, mechanical spectroscopy (internal friction) measurements were performed on Nb-8.9wt%Ta alloys containing oxygen in solid solution. The experimental results presented complex internal friction spectra. With the addition of substitutional solute, interactions between the two types of solutes (substitutional and interstitial) were observed, considering that the random distribution of the interstitial atoms was affected by the presence of substitutional atoms. Interstitial diffusion coefficients, pre-exponential factors and activation energies were calculated for oxygen in this alloy.
Resumo:
Metals that present bcc crystalline structure, when receiving addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, undergo significant changes in their physical properties, being able to dissolve great amounts of those interstitial elements, thus forming solid solutions. Niobium and most of its alloys possess bcc crystalline structure and, as Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this paper, mechanical spectroscopy (internal friction) measurements were performed in Nb-2.0wt%Ti alloys containing nitrogen in solid solution. The experimental results presented complex internal friction spectra and with the addition of substitutional solute, it was observed interactions between the two types of solutes (substitutional and interstitial), considering that the random distribution of the interstitial atoms was affected by the presence of substitutional atoms. Interstitial diffusion coefficients, pre-exponential factors and activation energies were calculated for nitrogen in the Nb-2.0wt%Ti alloys.
Resumo:
The present work reports on the structural evaluation of mechanically alloyed Ti-xZr-22Si-11B (x = 5, 7, 10, 15 and 20 at-%) powders. Milled powders and hot-pressed alloys were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. The Si and B atoms were preferentially dissolved into the Ti and Zr lattices during ball milling of Ti-xZr-22Si-11B (x = 7, 10, 15 and 20 at-%) powders, and extended solid solutions were achieved. The displacement of Ti peaks was more pronounced to the direction of lower diffraction angles with increasing Zr amounts in mechanically alloyed Ti-Zr-Si-B powders, indicating that the Zr atoms were also dissolved into the Ti lattice.
Resumo:
The eutectoid transformation may be defined as a solid-state diffusion-controlled decomposition process of a high-temperature phase into a two-phase lamellar aggregate behind a migrating boundary on cooling below the eutectoid temperature. In substitutional solid solutions, the eutectoid reaction involves diffusion of the solute atoms either through the matrix or along the boundaries or ledges. The effect of Ag on the non-isothermal kinetics of the reverse eutectoid reaction in the Cu-9 mass%Al, Cu-10 mass%Al, and Cu-11 mass%Al alloys were studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The activation energy for this reaction was obtained using the Kissinger and Ozawa methods. The results indicated that Ag additions to Cu-Al alloys interfere on the reverse eutectoid reaction, increasing the activation energy values for the Cu-9 mass%Al and Cu-10 mass%Al alloys and decreasing these values for the Cu-11 mass%Al alloy for additions up to 6 mass%Ag. The changes in the activation energy were attributed to changes in the reaction solute and in Ag solubility due to the increase in Al content.
Resumo:
Glasses and glass-ceramics have been obtained in oxyfluoride systems involving lead and cadmium fluorides and one of the well-known glass former oxides SiO2, B2O3 and TeO2. Vitreous domains were established and a wide range of compositions including high heavy metal contents lead to stable glasses. Amorphous structures have been studied by short-range order spectroscopy techniques (Raman scattering and x-ray absorption) and molecular basic structures have been identified. Besides the usual oxides, the role of glass former could also be proposed for cadmium ions. Special attention has been paid for crystallization process. Cubic lead fluoride, cubic lead tellurite, tetragonal tellurium oxide and a solid solution of the type Pb1-xCdxF2 are obtained as crystallization products depending on the composition and temperature of heat treatments. Pb1-xCdxF2 solid solutions are well known superionic materials and obtaining this solid solution as a crystal phase could be very interesting for applications concerning ionic electrical conduction properties. The addition of rare earth ions led to the control of the crystallization process. In the presence of the nucleating ion only the cubic form beta-PbF2 was identified. Rare earth ions are present in the crystal phase and crystal-like spectroscopic properties were observed suggesting interesting applications for these perfectly transparent glass ceramics in photonics.
Resumo:
Different (Sn,Ti)O2 compositions were sintered at 1450 °C for 2 h with the purpose of investigating their sintering and mass transport properties. Highly dense ceramics were obtained and their structural properties studied by X-ray diffraction and scanning electron microscopy. The changes in lattice parameters were analyzed by the Rietveld method and two mass transport mechanisms were observed during sintering in different temperature ranges, evidenced by the linear shrinkage rate as a function of temperature. The effect of the concentration of TiO2 on mass transport and densiffication during sintering was analyzed by considering the intrinsic defects. System densiffication was attributed to a mass transport mechanism in the SnO2 matrix, caused by the presence of TiO2, which formed a solid solution phase. The change in the mass transport mechanism was attributed to chemical bonding between SnO2 and TiO2, which improves ionic difusion as the concentration of TiO2 increased in (Sn,Ti)O2 compositions. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The solid solution 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most widely investigated relaxor ceramic, because of its high dielectric constant and low sintering temperatures. PMN-PT powders containing single perovskite phase were prepared by using a Timodified columbite precursor obtained by the polymeric precursor method. Such precursor reacts directly with stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. The structural effects of K additive included in the columbite precursor and 0.9PMN-0.1PT powders were also studied. The phase formation at each processing step was verified by XRD analysis, being these results used for the structural refinement by the Rietveld method. It was verified the addition of K in the columbite precursor promotes a slight increasing in the powder crystallinity. There was not a decrease in the amount of perovskite phase PMN-PT for 1mol% of K, and the particle and grain size were reduced, making this additive a powerful tool for grain size control.