5 resultados para SUBALGEBRAS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Z(2)-gradings of Clifford algebras are reviewed and we shall be concerned with an alpha-grading based on the structure of inner automorphisms, which is closely related to the spacetime splitting, if we consider the standard conjugation map automorphism by an arbitrary, but fixed, splitting vector. After briefly sketching the orthogonal and parallel components of products of differential forms, where we introduce the parallel [orthogonal] part as the space [time] component, we provide a detailed exposition of the Dirac operator splitting and we show how the differential operator parallel and orthogonal components are related to the Lie derivative along the splitting vector and the angular momentum splitting bivector. We also introduce multivectorial-induced alpha-gradings and present the Dirac equation in terms of the spacetime splitting, where the Dirac spinor field is shown to be a direct sum of two quaternions. We point out some possible physical applications of the formalism developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

lsoscalar (T = 0) plus isovector (T = 1) pairing Hamiltonian in LS-coupling. which is important for heavy N = Z nuclei, is solvable in terms of a SO(8) Lie algebra for three special values of the mixing parameter that measures the competition between the T = 0 aid T = 1 pairing. The SO(8) algebra is generated, amongst others, by the S = 1, T = 0 and S = 0, T = 1 pair creation and annihilation operators and corresponding to the three values of the mixing parameter, there are three chains of subalgebras: SO(8) superset of SOST (6) superset of SOS(3) circle times SOT(3), SO(8) superset of [SOS(5) superset of SOS(3)] circle times SOT(3) and SO(8) superset of [SOT(5) superset of SOT(3)] circle times SOS(3). Shell model Lie algebras, with only particle number conserving generators, that are complementary to these three chains of subalgebras are identified and they are used in the classification of states for a given number of nucleons. The classification problem is solved explicitly tor states with SO(8) seniority nu = 0, 1, 2, 3 and 4. Using them, hand structures in isospin space are identified for states with nu = 0, 1, 2 and 3. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solutions of a large class of hierarchies of zero-curvature equations that includes Toda- and KdV-type hierarchies are investigated. All these hierarchies are constructed from affine (twisted or untwisted) Kac-Moody algebras g. Their common feature is that they have some special vacuum solutions corresponding to Lax operators lying in some Abelian (up to the central term) subalgebra of g; in some interesting cases such subalgebras are of the Heisenberg type. Using the dressing transformation method, the solutions in the orbit of those vacuum solutions are constructed in a uniform way. Then, the generalized tau-functions for those hierarchies are defined as an alternative set of variables corresponding to certain matrix elements evaluated in the integrable highest-weight representations of g. Such definition of tau-functions applies for any level of the representation, and it is independent of its realization (vertex operator or not). The particular important cases of generalized mKdV and KdV hierarchies as well as the Abelian and non-Abelian affine Toda theories are discussed in detail. © 1997 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE