9 resultados para STEREOSELECTIVE IODOLACTONIZATION
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The hydroalumination of butylseleno acetylenes with DIBAL-H followed by addition of n-butyllithium generated in situ the (Z)-butylseleno vinyl alanates intermediates which were captured with C(4)H(9)TeBr furnishing the (E)-telluro(seleno)ketene acetals exclusively. The isomers with opposite stereochemistry (Z)-telluro(seleno)ketene acetals were obtained by the reduction of phenylseleno acetylenes with lithium di-(isobutyl)-n-butyl aluminate hydride (Zweifel's reagent) followed by reaction of (E)-phenylseleno vinyl alanates intermediates with C(4)H(9)TeBr. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An enantioselective high-performance liquid chromatographic method for the analysis of carvedilol in plasma and urine was developed and validated using (-)-menthyl chloroformate (MCF) as a derivatizing reagent. Chloroform was used for extraction, and analysis was performed by HPLC on a C18 column with a fluorescence detector. The quantitation limit was 0.25 ng/ml for S(-)-carvedilol in plasma and 0.5 ng/ml for R(+)-carvedilol in plasma and for both enantiomers in urine. The method was applied to the study of enantioselectivity in the pharmacokinetics of carvedilol administered in a multiple dose regimen (25mg/12h) to a hypertensive elderly female patient. The data obtained demonstrated highest plasma levels for the R(+)-carvedilol(AUCSS 75.64 vs 37.29ng/ml). The enantiomeric ratio R(+)/S(-) was 2.03 for plasma and 1.49 0 - 12 for urine (Aeo-12 17.4 vs 11.7 pg). Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
2,3-Bis(methylsulfanyl)norbomenobenzoquinone undergoes reaction with nitrogen, oxygen, sulfur or carbon nucleophiles to give the trisubstituted adducts containing the new substituent at the ring junction. Their configurations are assigned by H-1 NMR spectroscopy and NOE enhancement experiments. (C) 1997 Elsevier B.V. Ltd.
Resumo:
The total synthesis of 8,9-licarinediols was selectively carried out from licarin A, previously obtained by oxidative coupling of (E)-isoeugenol. The corresponding enantiomerically pure (+)- and(-)-licarin A ester derivatives were subjected to Sharpless oxidation to yield the asymmetric C-8, C-9 dihydroxylation products, whose absolute configurations were established by means of the CD and NMR spectroscopic analyses of their Mosher ester derivatives. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Toluene and verapamil are subject to extensive oxidative metabolism mediated by CYP enzymes, and their interaction can be stereoselective. In the present study we investigated the influence of toluene inhalation on the enantioselective kinetic disposition of verapamil and its metabolite, norverapamil, in rats. Male Wistar rats (n = 6 per group) received a single dose of racemic verapamil (10 mg/kg) orally at the fifth day of nose-only toluene or air (control group) inhalation for 6 h/day (25, 50, and 100 ppm). Serial blood samples were collected from the tail up to 6 h after verapamil administration. The plasma concentrations of verapamil and norverapamil enantiomers were analyzed by LC-MS/MS by using a Chiralpak AD column. Toluene inhalation did not influence the kinetic disposition of verapamil or norverapamil enantiomers (p > 0.05, Kruskal-Wallis test) in rats. The pharmacokinetics of verapamil was enantioselective in the control group, with a higher plasma proportion of the S-verapamil (AUC 250.8 versus 120.4 ng.h.mL(-1); p <= 0.05, Wilcoxon test) and S-norverapamil (AUC 72.3 versus 52.3 ng.h.mL(-1); p <= 0.05, Wilcoxon test). Nose-only exposure to toluene at 25, 50, or 100 ppm resulted in a lack of enantioselectivity for both verapamil and norverapamil. The study demonstrates the importance of the application of enantioselective methods in studies on the interaction between solvents and chiral drugs.
Resumo:
A set of five fungal species, Botrytis cinerea, Trichoderma viride and Eutypa lata, and the endophytic fungi Colletotrichum crassipes and Xylaria sp., was used in screening for microbial biocatalysts to detect monooxygenase and alcohol dehydrogenase activities (for the stereoselective reduction of carbonyl compounds). 4-Ethylcyclohexanone and acetophenone were biotransformed by the fungal set. The main reaction pathways involved reduction and hydroxylations at several positions including tertiary carbons. B. cinerea was very effective in the bioreduction of both substrates leading to the chiral alcohol (S)-1-phenylethanol in up to 90% enantiomeric excess, and the cis-trans ratio for 4-ethylcyclohexanol was 0:100. trans-4-Ethyl-1-(1S-hydroxyethyl)cyclohexanol, obtained from biotransformation by means of an acyloin-type reaction, is reported here for the first time. The absolute configurations of the compounds trans-4-ethyl-1-(1S-hydroxyethyl)cyclohexanol and 4-(1S- and 4-(1R-hydroxyethyl)cyclohexanone were determined by NMR analysis of the corresponding Mosher's esters. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The resolution of the natural racemic chromane 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(3 ''-methyl-2 ''-butenyl)-2-(4'-methyl-1',3'-pentadienyl)-2H-1-benzopyran-6-carboxylic acid (1) isolated from the leaves of Peperomia obtusifolia has been accomplished using stereoselective HPLC. The absolute coil figuration of the resolved enantiomers was determined by the analysis of optical rotations and CD spectra. The finding of a racemic mixture instead of an enantiomerically pure metabolite raises questions about the final steps in the biosynthesis of this class of natural products, suggesting that the intramolecular chromane ring formation step may not be enzymatically controlled at all in P. obtusifolia. Chirality 21:799-801, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Pós-graduação em Química - IQ