417 resultados para SNAKE VENOM METALLOPROTEINASE
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
BaP1 is a metalloproteinase isolated from the venom of the Central American snake Bothrops asper (terciopelo). It is a 24 kDa protein consisting of a single chain which includes the metalloproteinase domain only, therefore being classified as a class P-I snake-venom metalloproteinase. BaP1 induces prominent local tissue damage, such as haemorrhage, myonecrosis, blistering, dermonecrosis and oedema. In order to elucidate its structure, BaP1 was crystallized by the hanging-drop vapour-diffusion technique in 0.1 M bicine pH 9.0, 10% PEG 20 000 and 2%(v/v) dioxane. Diffraction data were observed to a resolution of 2.7 Angstrom. Crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 38.22, b = 60.17, c = 86.09 Angstrom.
Resumo:
BaP1 is a 22.7-kD P-I-type zinc-dependent metalloproteinase isolated from the venom of the snake Bothrops asper, a medically relevant species in Central America. This enzyme exerts multiple tissue-damaging activities, including hemorrhage, myonecrosis, dermonecrosis, blistering, and edema. BaP1 is a single chain of 202 amino acids that shows highest sequence identity with metalloproteinases isolated front the venoms of snakes of the subfamily Crotalinae. It has six Cys residues involved in three disulfide bridges (Cys 117-Cys 197, Cys 159-Cys 181, Cys 157-Cys 164). It has the consensus sequence H(142)E(143)XXH(146)XXGXXH(152), as well as the sequence C164I165M166, which characterize the metzincin superfamily of metalloproteinases. The active-site cleft separates a major subdomain (residues 1-152), comprising four a-helices and a five-stranded beta-sheet, from the minor subdomain, which is formed by a single a-helix and several loops. The catalytic zinc ion is coordinated by the N-epsilon2 nitrogen atoms of His 142, His 146, and His 152, in addition to a solvent water molecule, which in turn is bound to Glu 143. Several conserved residues contribute to the formation of the hydrophobic pocket, and Met 166 serves as a hydrophobic base for the active-site groups. Sequence and structural comparisons of hemorrhagic and nonhemorrhagic P-I metalloproteinases from snake venoms revealed differences in several regions. In particular, the loop comprising residues 153 to 176 has marked structural differences between metalloproteinases with very different hemorrhagic activities. Because this region lies in close proximity to the active-site microenvironment, it may influence the interaction of these enzymes with physiologically relevant substrates in the extracellular matrix.
Resumo:
Thrombocytopenia and platelet dysfunction occur in patients bitten by Bothrops sp snakes in Latin America. An experimental model was developed in mice to study the effects of B. asper venom in platelet numbers and function. Intravenous administration of this venom induces rapid and prominent thrombocytopenia and ex vivo platelet hypoaggregation. The drop in platelet numbers was primarily due to aspercetin, a protein of the C-type lectin family which induces von Willebrand factor-mediated platelet aggregation/agglutination. In addition, the effect of class P-III hemorrhagic metalloproteinases on the microvessel wall also contributes to thrombocytopenia since jararhagin, a P-III metalloproteinase, reduced platelet counts. Hypoaggregation was associated with the action of procoagulant and defibrin(ogen)ating proteinases jararacussin-1 (a thrombin-like serine proteinase) and basparin A (a prothrombin activating metalloproteinase). At the doses which induced hypoaggregation, these enzymes caused defibrin(ogen)ation, increments in fibrin(ogen) degradation products and D-dimer and prolongation of the bleeding time. Incubation of B. asper venom with batimastat and α 2-macroglobulin abrogated the hypoaggregating activity, confirming the role of venom proteinases in this effect. Neither aspercetin nor the defibrin(ogen)ating and hypoaggregating components induced hemorrhage upon intravenous injection. However, aspercetin, but not the thrombin-like or the prothrombin-activating proteinases, potentiated the hemorrhagic activity of two hemorrhagic metalloproteinases in the lungs. © 2005 Schattauer GmbH, Stuttgart.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake envenomations. Such plants are sources of many pharmacologically active compounds and have been shown to antagonize the effects of some venoms and toxins. The present study explores the activity of triacontyl p-coumarate (PCT), an active compound isolated from root bark of Bombacopsis glabra vegetal extract (Bg), against harmful effects of Bothropoides pauloensis snake venom and isolated toxins (SVMPs or phospholipase A2). Before inhibition assays, Bg or PCT was incubated with venom or toxins at ratios of 1:1 and 1:5 (w/w; venom or isolated toxins/PCT) for 30 min at 37 °C. Treatment conditions were also assayed to simulate snakebite with PCT inoculated at either the same venom or toxin site. PCT neutralized fibrinogenolytic activity and plasmatic fibrinogen depletion induced by B. pauloensis venom or isolated toxin. PCT also efficiently inhibited the hemorrhagic (3MDH-minimum hemorrhagic dose injected i.d into mice) and myotoxic activities induced by Jararhagin, a metalloproteinase from B. jararaca at 1:5 ratio (toxin: inhibitor, w/w) when it was previously incubated with PCT and injected into mice or when PCT was administered after toxin injection. Docking simulations using data on a metalloproteinase (Neuwiedase) structure suggest that the binding between the protein and the inhibitor occurs mainly in the active site region causing blockade of the enzymatic reaction by displacement of catalytic water. Steric hindrance may also play a role in the mechanism since the PCT hydrophobic tail was found to interact with the loop associated with substrate anchorage. Thus, PCT may provide a alternative to complement ophidian envenomation treatments. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Flavonoids are potent anti-inflammatory compounds isolated from several plant extracts, and have been used experimentally against inflammatory processes. In this work, a PLA(2) isolated from the Crotalus durissus cascavella venom and rat paw oedema were used as a model to. study the effect of flavonoids on PLA(2). We observed that a treatment of PLA(2) with morin induces several modifications in the aromatic amino acids, with accompanying changes in its amino acid composition. In addition, results from circular dichroism spectroscopy and UV scanning revealed important structural modifications. Concomitantly, a considerable decrease in the enzymatic and antibacterial activities was observed, even though anti-inflammatory and neurotoxic activities were not affected. These apparent controversial results may be an indication that PLA(2) possess a second pharmacological site which does not affect or depend on the enzymatic activity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The isolation and biochemical/enzymatic characterization of an L-amino acid oxidase, Balt-LAAO-I, from Bothrops alternates snake venom, is described. Balt-LAAO-I is an acidic glycoprotein, pI similar to 5.37, homodimeric, M-r similar to 123, 000, whose Nterminal sequence is ADVRNPLE EFRETDYEVL. It displays a high specificity toward hydrophobic and basic amino acids, while deglycosylation does not alter its enzymatic activity. Bait-LAAO-I induces platelet aggregation and shows bactericidal activity against Escherichia coli and Staphylococcus aureus. In addition, this enzyme is slightly hemorrhagic and induces edema in the mouse paw. Bait-LAAO-I is a multifunctional enzyme with promising relevant biotechnological and medical applications. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Venous ulcers of the lower limbs complicated by infection or chronicity represent a serious public health problem. The elevated number of those afflicted burdens the health services, interferes in quality of life and causes absenteeism. Although there are 2,500 items on the market, ranging from the simplest dressing up to the most complex types of dressing, treatment remains a challenge. Among the substances used, fibrin sealant is the one that promotes diminution of bacterial colonization and of edema, controls hemorrhaging, alters the pain threshold by protecting the nerve endings, hydrates the wound bed and forms granulation tissue that favors healing. Its disadvantages include higher cost and utilization of human fibrinogen that can transmit infectious diseases. The Center for the Study of Venoms and Venomous Animals (CEVAP) at São Paulo State University (UNESP) developed a new sealant made up of fibrinogen extracted from large animals and from an enzyme obtained from snake venom. The present study, developed in the Health Education Clinic (CEPS) of Sacred Heart University (USC) aimed to evaluate the effect of the new sealant on the healing process of venous ulcers in 24 adult patients, seven of whom were male and 17 female. Two study groups were formed as follows: Group 1 (G1) - control group of 11 patients treated with essential fatty acid (EFA) and Unna's boot, and Group 2 (G2) - 13 patients treated with essential fatty acid (EFA), fibrin sealant and Unna's boot. The follow-up lasted eight weeks and the sealant was applied at only the first and fourth weeks. The results showed that Group 2 presented worse lesion conditions as to healing, but, when comparing the two groups, it was noteworthy that the the sealant was effective in healing venous ulcers. There is evidence that the new sealant is recommended for leg ulcers with the following advantages: ease of application, preparation of the wound bed, diminution of pain and a higher number of discharges in the eighth week. More important, other positive characteristics are non-transmission of infectious diseases, absence of adverse reactions, and economic advantage of being produced by Brazilian technology. Finally, it is suggested that the weekly application of sealant, for at least eight weeks, could improve the healing process and consequently life quality.