33 resultados para SKYRME PARAMETRIZATION
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Pós-graduação em Física - IFT
Resumo:
We show that at one-loop order, negative-dimensional, Mellin-Barnes (MB) and Feynman parametrization (FP) approaches to Feynman loop integral calculations are equivalent. Starting with a generating functional, for two and then for n-point scalar integrals, we show how to reobtain MB results, using negative-dimensional and FP techniques. The n-point result is valid for different masses, arbitrary exponents of propagators and dimension.
Resumo:
We show that the Skyrme theory possesses a submodel with an infinite number of local conserved currents. The constraints leading to the submodel explore a decomposition of SU(2) with a complex field parametrizing the symmetric space SU(2)/U(1) and a real field in the direction of U(1). We demonstrate that the Skyrmions of topological charges ii belong to such integrable sector of the theory. Our results open ways to the development of exact methods, compensating for the non-existence of a BPS type sector in the Skyrme theory. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
The SU(2) Shyrme model, expanding in the collective coordinates variables, gives rise to second-class constraints. Recently this system was embedded in a more general Abelian gauge theory using the BFFT Hamiltonian method. in this work we quantize this gauge theory computing the Noether current anomaly using for this two different methods: an operatorial Dirac first class formalism and the non-local BV quantization coupled with the Fujikawa regularization procedure. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using a collective potential derived previously on the basis of the generator coordinate method with Skyrme interactions, we obtain values for the compression modulus of Ca-40 which are in good agreement with a recently obtained experimental value. Calculated values for the compression modulus for O-16 are also given. The procedure involved in the derivation of the collective potential is briefly reviewed and discussed.
Resumo:
Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified by choosing a functional form for the scalar potential and for the interaction term. However, in order to compare to observational data it is usually more convenient to use parametrizations of the dark energy equation of state and the evolution of the dark matter energy density. Once the relevant parameters are fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I give a few examples and show that it is possible for the effective equation of state for the scalar field to cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like linear interaction results from a simple parametrization of the coupling.
Resumo:
The simultaneous investigation of the pion electromagnetic form factor in the space- and timelike regions within a light-front model allows one to address the issue of nonvalence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector-meson-dominance model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 (GeV/c)(2), while in timelike region the model produces reasonable results up to 10 (GeV/c)(2).
Resumo:
We use the duality between the local Cartezian coordinates and the solutions of the Klein-Gordon equation to parametrize locally the spacetime in terms of wave functions and prepotentials. The components of metric, metric connection, curvature as well as the Einstein equation are given in this parametrization. We also discuss the local duality between coordinates and quantum fields and the metric in this later reparametrization. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A statistical model of linear-confined quarks is applied to obtain the flavor asymmetry of the nucleon sea. The model parametrization is fixed by the experimental available data, where a temperature parameter is used to fit the Gottfried sum rule violation. Results are presented for the ratios of light quark and antiquark distributions, d/u and (d) over bar/(u) over bar.
Resumo:
We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)