42 resultados para SACCHARIFICATION

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aimed to analyze the energetic consumption of the etanol production system, using the cassava as carbohidrates source. The researches were carried out from the field in the mid region of Paranapanema river, São Paulo state, during the period January to December, 2007. The energy consumption referring to the phases of crop production and industrial processing were appraised. It was verified that the total energetic cost of the crop production corresponded to 9,528.33 MJ ha(-1), and the most onerous item was the inputs (35.72%). In the industrial step, the energetic consumption was equivalent to 2,208.28 MJ t(-1). The operations of hydrolysis/saccharification/treatment of the juice represented 56.72% of the total energetic expenditure. The cassava crop presented an energetic cost of 1.54 MJ L-1 in relation to the etanol produced in the main agronomic operations crop production, and 11.76 MJ L-1 in the industrial processing. The energy efficiency observed in the cultivation and industrialization of the cassava was of 1.76.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research analyzed the energetic consumption of etanol from the corn crops (Zea mays 14 The field surveys were carried out in the Midle Paranapanema River Region, São Paulo state, Brazil, in the period from January to December 2007 The energy consumption on stage of production and industrial processing of grain were evaluated It was verified that the total energetic cost of the crop production corresponded to 15,633 7MJ ha(-1), and the most onerous item was the inputs (77 5%) In the industrial step, the energetic consumption was equivalent to 3.882.2MJ r(-1) The operations of hydrolysis, saccharification and treatment of the broth represented 50 2% of the total energetic expenditure It was also observed an energetic cost of 7 9MJ L(-1) in relation to the atonal produced in the main crop production operations, and II 8MJ L(-1) in the industrial processing The energy balance of crop production and industrialization was of 1 2MJ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research analyzed the energetic consumption of the etanol, using as raw-material sugar cane. The searches were carried out from the field in the Midle Paranapanema River Region, São Paulo state, in the period from January to December 2007. The referring energy consumption from the crop production phase and industrial processing were evaluated. It was verified that the total energetic cost of the crop production corresponded to 14370.9MJ ha(-1), and the most onerous item was the inputs (50.4%). In the industrial step, the energetic consumption was equivalent to 1,641.56MJ t(-1), The 'hydrolysis, saccharification and broth treatment operations' represented 71.72% of the total energetic expenditure. It was also observed an energetic cost of 2.0MJ L(-1) in relation to the etanol produced in the main crop production operations, and 19.4MJ L(-1) in the industrial processing. The energy efficiency observed in the crop production and industrialization were of 1.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uma possibilidade de incremento na cadeia produtiva do gengibre seria o uso de rizomas desclassificados para comercialização in natura, ou mesmo o resíduo da extração de óleos, como matérias-primas para a obtenção de bebidas destiladas. O amido não é diretamente fermentável, necessitando de uma hidrólise prévia de suas cadeias para a obtenção de glicose. Neste trabalho, objetivou-se avaliar o efeito das concentrações de amilases sobre o perfil de açúcares e rendimento no processo de hidrólise-sacarificação de gengibre. O processo seguiu o delineamento central composto rotacional para dois fatores, totalizando 11 tratamentos. Os resultados obtidos mostram o efeito das concentrações da α-amilase (Termamyl 2X) e da amiloglucosidase (AMG 300L) sobre o teor de glicose do hidrolisado e efeito da concentração de amiloglucosidase sobre o teor de dextrina. Os maiores rendimentos de hidrólise da suspensão de gengibre foram obtidos nas condições de elevada concentração de -amilase e amiloglucosidase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Botryosphaeran, a new exopolysaccharide from the endophytic fungus Botryosphaeria rhodina MAMB-05, and algal laminarin were hydrolyzed by partially-fractionated enzymes of the beta-glucanolytic complex from Trichoderma harzianum Rifai. beta-Glucanase fractions (F-I and F-II) separated by gel permeation chromatography presented different modes of attack on botryosphaeran and laminarin. Botryosphaeran was hydrolyzed to the extent of 66% (F-I) and 98% (F-II) within 30 min, and its main hydrolysis products were gluco-oligosaccharides of DP >= 4, with lesser amounts of glucose, di- and tri-saccharides. The action of enzyme fractions I and II on laminarin resulted in 15% conversion to glucose, while the percentage of saccharification was radically different (70% for F-I and 25% for F-II). The different product arrays within the polysaccharide hydrolysates can be explained by the difference in the enzymes' specificities within each enzyme fraction, and the molecular structures of the polysaccharides and their complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho objetivou-se avaliar o uso de enzimas complementares no processo enzimático de hidrólise e sacarificação para a produção de etanol a partir do resíduo fibroso das fecularias. Os resultados obtidos demonstraram que 63,42% do amido foram hidrolisados no tratamento em que não se utilizaram enzimas complementares. No tratamento com as duas enzimas complementares foram hidrolisados 89,55%, no tratamento com celulase 65,42% e no tratamento com pectinase 88,73%. A prensagem do resíduo após o processo de hidrólise e sacarificação mostrou-se eficiente, ficando 10,43% do total de açúcares obtidos retidos no resíduo fibroso final. Portanto, o tratamento em que se utilizou a pectinase como enzima complementar na hidrólise foi o melhor. A celulase não apresentou efeito significativo no rendimento do processo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) are used to investigate molecular organization in Langmuir-Blodgett (LB) films of two kinds of lignins. The lignins were extracted from sugar cane bagasse using distinct extraction processes and are referred to here as ethanol lignin (EL) and saccharification lignin (SAC). AFM images show that LB films from EL have a flat surface in comparison with those from SAC. For the latter, ellipsoidal aggregates are seen oriented perpendicularly to the substrate. This result is confirmed by a combination of transmission and reflection FTIR measurements, which also point to lignin aggregates preferentially oriented perpendicularly to the substrate. For LB films from EL, on the other hand, aggregates are preferentially oriented parallel to the substrate, again consistent with the flat surface observed in AFM data. The vibrational spectroscopy data for cast films from both lignins show random molecular organization, as one should expect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucoamylases have been used with alpha-amylases for the industrial conversion of starch into glucose. However, little is known about the properties of this glycosylated protein retained in the cell wall of Saccharomyces as well as its role in the saccharification and fermentation of amylaceous substrates, notably in high cell density processes. In most of the strains assayed, decreases in biomass formation were followed by increases in glucoamylase secretion (expressed as U/mg(biomass) in 1 ml of culture) when glucose was exchanged for starch as carbon source or the growth temperature was raised from 30 to 35 degrees C. Despite the losses in viability, significant increases in the activity of the wall fraction occurred when cultures of thermotolerant yeasts propagated at 30 degrees C or washed cells resuspended in buffer solution were heated to 60 degrees C for 60-80 min prior to amylolytic assays. Thus, intact cells of thermotolerant yeasts can be used as colloidal biocatalysts in starch degradation processes. (C) 2005 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metagenomics has been widely employed for discovery of new enzymes and pathways to conversion of lignocellulosic biomass to fuels and chemicals. In this context, the present study reports the isolation, recombinant expression, biochemical and structural characterization of a novel endoxylanase family GH10 (SCXyl) identified from sugarcane soil metagenome. The recombinant SCXyl was highly active against xylan from beechwood and showed optimal enzyme activity at pH 6,0 and 45°C. The crystal structure was solved at 2.75 Å resolution, revealing the classical (β/α)8-barrel fold with a conserved active-site pocket and an inherent flexibility of the Trp281-Arg291 loop that can adopt distinct conformational states depending on substrate binding. The capillary electrophoresis analysis of degradation products evidenced that the enzyme displays unusual capacity to degrade small xylooligosaccharides, such as xylotriose, which is consistent to the hydrophobic contacts at the +1 subsite and low-binding energies of subsites that are distant from the site of hydrolysis. The main reaction products from xylan polymers and phosphoric acid-pretreated sugarcane bagasse (PASB) were xylooligosaccharides, but, after a longer incubation time, xylobiose and xylose were also formed. Moreover, the use of SCXyl as pre-treatment step of PASB, prior to the addition of commercial cellulolytic cocktail, significantly enhanced the saccharification process. All these characteristics demonstrate the advantageous application of this enzyme in several biotechnological processes in food and feed industry and also in the enzymatic pretreatment of biomass for feedstock and ethanol production. © 2013 Alvarez et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications. © 2013 Elsevier Ltd.