84 resultados para Rot
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A new rot caused by a binucleate Rhizoctonia sp. affecting the tuberous root cortex of the domesticated yacon (Smallanthus sonchifolius) has been observed in Brazil. Isolates of a binucleate Rhizoctonia sp. were collected from roots with rot symptoms and characterized by the number of nuclei per cell, hyphal anastomosis, RAPD molecular markers, ITS-5.8S rDNA sequence and pathogenicity tests. All isolates had a mean of 1.9-2.2 nuclei per cell and anastomosed with the binucleate Rhizoctonia sp. AG G-tester strain. RAPD analysis was carried out between 11 isolates recovered from yacon and 11 AG (A, Ba, Bb, Bo, C, D, F, G, O, P, Q) standard testers of binucleate Rhizoctonia sp. Genetic similarities of 94.8-100% were observed among isolates of the binucleate Rhizoctonia sp. from yacon and all isolates were genetically more closely related to the AG G tester than other strains according to UPGMA analysis using RAPD markers. Homologies of complete ITS nucleotide sequences were 100% between binucleate isolates of Rhizoctonia sp. from yacon and the AG G tester. According to pathogenicity tests, the isolates caused typical rot symptoms of yacon tubers 90 days after inoculation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ceratocystis fimbriata foi encontrado em tubérculos de inhame (Colocasia esculenta), apresentando lesões escuras, pouco profundas, contendo estruturas de reprodução do fungo, cuja coloração variava do cinza ao negro. As amostras foram coletadas em supermercados, quitandas e varejões nos Estados de São Paulo, Rio de Janeiro, Bahia, Rondônia e Distrito Federal que, na maioria dos casos, comercializavam inhame produzido no Estado de São Paulo. Os sintomas de podridão negra indicam se tratar de uma doença de pós-colheita. Seqüências de rDNA indicam que os isolados de Colocasia sp. pertencem ao clado da America Latina do complexo C. fimbriata, embora esses isolados sejam mais agressivos em pseudo-pecíolos de C. esculenta do que os isolados de Ficus carica e Mangifera indica.
Resumo:
In this paper we present the first report of the occurrence of a binucleate Rhizoctonia spp. causing hypocotyl and root rot in kale in Brazil. Rhizoctonia spp. were isolated from kale (Brassica oleracea var. acephala) with symptoms of hypocotyl and root rot. The isolates, characterized as binucleate Rhizoctonia spp., did not show an anastomosis reaction with any of the binucleate Rhizoctonia spp. testers used. The pathogenicity of the isolates was tested under greenhouse conditions; all isolates were pathogenic and showed different symptom severities on kale. The ITS-5.8S rDNA sequences of kale isolates and 50 testers (25 binucleate Rhizoctonia spp. and 25 Rhizoctonia solani) were compared in order to characterize the genetic identity of Rhizoctonia spp. infecting kale. The kale isolates showed genetic identities ranging from 99.3 to 99.8% and were phylogenetically closely related to CAG 7 (AF354084), with identities of 98.5 and 98.7%. It is suggested that the binucleate Rhizoctonia spp. causing hypocotyl and root rot on kale Brazil comprises a new AG not yet described.
Resumo:
Lasiodiplodia theobromae was found causing stem rot on commercial production of Begonia x elatior in São Paulo, Brazil. Illustrations, morphological and molecular description are provided. Based on the morphology, this fungus was recognized as L. theobromae. However, L. theobromae has high similarity with other Lasiodiplodia species, some of which are not possible to be separated by morphological characters. Molecular identification of the fungus isolated from the infected tissues was conducted. The strain from begonia clustered with other isolates of L. theobromae. This is the first report of the occurrence of L. theobromae on B. elatior. © 2012 Australasian Plant Pathology Society Inc.
Fusarium solani f. sp. passiflorae: A new forma specialis causing collar rot in yellow passion fruit
Resumo:
The aim of this study was to characterize a Fusarium population obtained from yellow passion fruit (YPF) with collar rot using pathogenicity, morphocultural characteristics and molecular tests. Pathogenicity and disease severity were assessed in six plant species: YPF, zucchini, tomato, bean, soya bean and cucumber. Potato dextrose agar medium (PDA) was used to determine mycelial growth at five temperatures (15-35°C). The colour produced by isolates was also determined on PDA at 25°C. Synthetic nutrient agar medium was used to evaluate: (i) type of mycelium and phialides; (ii) size, shape and number of septa from conidia; and (iii) production of chlamydospores and perithecia. Molecular tests consisted of sequencing the ITS-5·8S rDNA region and elongation factor 1α (EF-1α) gene. The isolates caused large lesions on YPF, zucchini and tomato, with YPF having the highest mean disease severity and being the only one that showed wilt symptoms and death of the plant. Thus the isolates showed host specificity. Maximum mycelial growth occurred at 25°C and the predominant colour was bluish-white. The isolates produced long phialides, dense aerial mycelium, oval microconidia with a mean size of 9·5 × 2·6 μm, macroconidia of 32·7 × 3·4 μm with 3·3 septa, and chlamydospores; only one isolate lacked perithecia. Phylogenetic trees of the ITS region and EF-1α gene showed that isolates from YPF formed a distinct group within the F. solani group and the formae speciales of F. solani. It is proposed to name all isolates from YPF as F. solani f. sp. passiflorae. © 2013 British Society for Plant Pathology.
Resumo:
In this study, we aimed evaluate the behavior of the brown-rot fungus Gloeophylum trabeum and white-rot fungus Pycnoporus sanguineus on thermally-modified Eucalyptus grandis wood. To this end, boards from five-year-eleven-month-old E. grandis trees, taken from the Duratex-SA company stock, were thermally-modified between 180 ºC and 220 ºC in the Laboratory of Wood Drying and Preservation at Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo state Brazil. Samples of each treatment were tested according to the ASTM D-2017 (2008) technical norm. The accelerated decay caused by the brown-rot fungus G. trabeum was compared with the decay caused by the white-rot fungus P. sanguineus, studied by Calonego et al. (2010). The results showed that (1) brown-rot fungus caused greater decay than white-rot fungus; and (2) the increase in temperature from 180 to 220 ºC caused reductions between 28.2% and 70.0% in the weight loss of E. grandis samples incubated with G. trabeum.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pinus taeda is one of the main timber trees in Brazil, occupying 1.8 million ha with an annual productivity of 25-30 m(3) ha(-1). Another important species is Araucaria angustifolia, belonging to the fragile Rainforest biome, which for decades has been a major source of timber in Brazil. Some diseases that affect the roots and/or the stem of these trees and cause "damping-off" of the seedlings, with economic and environmental losses for the forest sector, are caused by the plant pathogenic fungi Fusarium sp. or Armillaria sp. This research project intended to isolate actinobacteria from the Araucaria rhizosphere, which present an antagonistic effect against these fungi. After the selection of the best pathogen inhibitors, morphologic characteristics, enzyme production, and their effect on the growth of Pinus taeda were studied. The actinobacteria were tested for their antagonistic capacity against Fusarium sp. in Petri plates with PDA as substrate. The inhibition zone was measured after 3, 5, 7, and 10 days. Of all the isolates tested, only two of them maintained inhibition zones up to 4 mm for 10 days. The inhibition of Armillaria sp. was tested in liquid medium and also in Petri dishes through the evaluation of the number of the fungal rhizomorphs in dual culture with the actinobacteria. It was found that all five isolates were able to inhibit the rhizomorph production, with the best performance of the isolate A43, which was capable of inhibiting both fungi, Fusarium and Armillaria. In a greenhouse experiment, the effect of five isolates on the growth of Pinus taeda seedlings was tested. Plant height, stem diameter, root and shoot dry matter were determined. The Streptomyces isolate A43 doubled plant growth. These results may lead to the development of new technologies in the identification of still unknown bacterial metabolites and new management techniques to control forest plant diseases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Rot caused by Fusarium pallidoroseum has had a severely negative impact on the export of melons from Brazil. Uncertainty regarding the health of the fruit due to the quiescent infection of the pathogen has led producers to use fungicides in the postharvest treatment of the fruit, thereby causing contamination and risking the health of consumers. Consequently, there is a demand for clean and safe natural technologies for the postharvest treatment of melons, including biological control. The present study aimed at evaluating bioagents for use in controlling Fusarium rot in 'Galia'melon. The following bioagents were evaluated: two isolates of Bacillus subtilis, B. licheniformis and a mixture of B. subtilis and B. licheniformis, as well as the yeasts Sporidiobolus pararoseus, Pichia spp., Pichia membranifaciens, P. guilliermondii, Sporobolomyces roseus, Debaryomyces hansenii and Rhodotorula mucilagenosa. Treatment with imazalil and water were used as controls. Two experiments were conducted in a completely randomised design with 10 replicates per treatment with four fruit per replicate; the disease incidence was evaluated in the first experiment, and the disease severity was evaluated in the second. Similarity analysis of the temporal evolution profiles of rot incidence caused by F. pallidoroseum allowed the evaluated treatments to be clustered into four groups. In the first experiment, the yeasts P. membranifaciens and D. hansenii produced results similar to that of the fungicide imazalil. The second experiment highlighted the yeasts P. guilliermondii and R. mucilaginosa. Electron microscopy studies confirmed that once applied to the fruit, the yeasts colonised the skin and damaged the pathogen mycelium; the action of the yeasts affected the mycelium of F. pallidoroseum, which had infected wounds on the fruit's surface. Bacillus spp. did not provide good disease control. These results demonstrated that yeasts have the potential to control postharvest rot caused by F. pallidoroseum in 'Galia'melon.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The prospection of biological control agents in similar environments to the microbe application improves the chances of microorganisms establishment added to the environment. The low survival of these beneficial microorganisms added to hydroponic environment is a problem for the growth promotion and root rot biological control success in hydroponic crops. Because of the environmental similarity between hydroponic systems and mangrove ecosystems, the aim of this work was to evaluate the ability of mangrove microbes to control root rot caused by Pythium aphanidermatum and to improve plant growth in hydroponic cucumbers. Among the 28 strains evaluated for disease control in small-hydroponic system using cucumber seedlings, Gordonia rubripertincta SO-3B-2 alone or in combination with Pseudomonas stutzeri (MB-P3A- 49, MB-P3-C68 and SO-3L-3), and Bacillus cereus AVIC-3-6 increased the seedlings survival and were subsequently evaluated in hydroponic cucumbers in a greenhouse. Bacillus cereus AVIC-3-6 protected the plants from stunting caused by the pathogen and Gordonia rubripertincta SO-3B-2 and Pseudomonas stutzeri MB-P3A-49 increased the plant growth. We concluded that microorganisms from mangroves are useful as biocontrol agents and for improving plant growth in hydroponic crops.