11 resultados para Response signal
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Electrochemical impedance spectroscopy measurements using two carbon steel electrodes in soybean biodiesel medium, produced by methylic route, were performed in an electrochemical cell that allows positioning the two electrodes face-to-face. To retain the biodiesel between the electrodes and prevent its leakage a porous membrane soaked in biodiesel was used. The amplitude of the AC potential and the area of the electrodes were varied. The linearity between disturbance and response signals was observed for tests when the amplitude of the AC potential was lower than 1500 mV (rms). The electrical resistance of biodiesel dominates the global response and carbon steel presents low corrosion, which is observed only at low frequency, and was confirmed by chemical tests performed in the membrane. In conclusion the electrical resistance of biodiesel can be estimated using electrochemical impedance spectroscopy with two electrodes set up. ©The Electrochemical Society.
Resumo:
This article presents a new method to detect damage in structures based on the electromechanical impedance principle. The system follows the variations in the output voltage of piezoelectric transducers and does not compute the impedance itself. The proposed system is portable, autonomous, versatile, and could efficiently replace commercial instruments in different structural health monitoring applications. The identification of damage is performed by simply comparing the variations of root mean square voltage from response signals of piezoelectric transducers, such as lead zirconate titanate patches bonded to the structure, obtained for different frequencies of the excitation signal. The proposed system is not limited by the sampling rate of analog-to-digital converters, dispenses Fourier transform algorithms, and does not require a computer for processing, operating autonomously. A low-cost prototype based on microcontroller and digital synthesizer was built, and experiments were carried out on an aluminum structure and excellent results have been obtained. © The Author(s) 2012.
Resumo:
During pregnancy, the maternal endocrine pancreas undergoes, as a consequence of placental lactogens and prolactin (PR,L) action, functional changes that are characterized by increased glucose-induced insulin secretion. After delivery, the maternal endocrine pancreas rapidly returns to nonpregnant state, which is mainly attributed to the increased serum levels of glucocorticoids (GCs). Although GCs are known to decrease insulin secretion and counteract PRL action, the mechanisms for these effects are poorly understood. We have previously demonstrated that signal transducer and activator of transcription 3 (STAT3) is increased in islets treated with PRL. In the present study, we show that STAT3 expression and serine phosphorylation are increased in pancreatic islets at the end of pregnancy (P19). STAT3 serine phosphorylation rapidly returned to basal levels 3 days after delivery (U). The expression of the sarcoendoplasmic reticulum Ca2+-ATPase 2 (SERCA2), a crucial protein involved in the regulation of calcium handling in P-cells, was also increased in P19, returning to basal levels at L3. PRL increased SERCA2 and STAT3 expressions and STAT3 serine phosphorylation in RINm5F cells. The upregulation of SERCA2 by PRL was abolished after STAT3 knockdown. Moreover, PRL-induced STAT3 serine phosphorylation and SERCA2 expression were inhibited by dexamethasone (DEX). Insulin secretion from islets of PI 9 rats pre-incubated with thapsigargin and L3 rats showed a dramatic suppression of first phase of insulin release. The present results indicate that PRL regulates SERCA2 expression by a STAT3-dependent mechanism. PRL effect is counteracted by DEX and might contribute to the adaptation of maternal endocrine pancreas during the peripartum period.
Resumo:
Background: Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N-2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins.Results: Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases.Conclusion: An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.
Resumo:
Following previously published observations that a conditioned response (CR) was lost more quickly by rainbow trout (Oncorhynchus mykiss) exhibiting a high responsiveness to stressors than by low responding individuals this study was designed to investigate the effects of exogenous cortisol on the retention of a CR in unselected rainbow trout. Fish held in isolation were conditioned over a 10-day period by pairing an innocuous signal (conditioned stimulus, CS: a water jet played on the surface of the tank water) with a mild stressor (unconditioned stimulus, US: 30 min of confinement). This resulted in a brief elevation of plasma cortisol levels (the CR) when the fish was exposed to the CS only. The effect of exogenous cortisol on the retention of the CR was evaluated by comparing the performance of fish that received cortisol-containing slow-release intraperitoneal implants, with fish receiving vehicle-only implants. Retention of the CR was assessed at intervals up to 35 days after conditioning ceased. The CR was considered to be evident when 30 min following presentation of the CS, mean plasma cortisol levels were significantly higher in conditioned than untrained fish. on day 1 both cortisol-implanted and vehicle-implanted conditioned fish exhibited a CR. However, from day 5 onwards the CR was observed only in the vehicle-implanted and conditioned group. This finding indicates that administration of cortisol accelerated the extinction of the CR in the cortisol-implanted fish, suggesting that elevated plasma cortisol levels can impair memory processes in rainbow trout. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background: Endurance training increases insulin-stimulated muscle glucose transport and leads to improved metabolic control in diabetic patients.Objective: To analyze the effects of endurance training on the early steps of insulin action in muscle of rats. Design: Male rats submitted to daily swimming for 6 weeks were compared with sedentary controls. At the end of the training period, anesthetized animals received an intravenous (i.v.) injection of insulin and had a fragment of their gastrocnemius muscle excised for the experiments.Methods: Associations between insulin receptor, insulin receptor substrates (IRS)-1 and -2 and phosphatidylinositol 3-kinase (PI3-kinase) were analyzed by immunoprecipitation and immunoblotting. Akt-1 serine phosphorylation and specific protein quantification were detected by immunoblotting of total extracts, and IRS-1/IRS-2-associated PI3-kinase activity were determined by thin-layer chromatography.Results: Insulin-induced phosphorylation of IRS-1 and IRS-2 increased respectively by 1.8-fold (P < 0.05) and 1.5-fold (P < 0.05), whereas their association with PI3-kinase increased by 2.3-fold (P < 0.05) and 1.9-fold (P < 0.05) in trained rats as compared with sedentary controls, respectively. The activity of PI3-kinase associated with IRS-1 and IRS-2 increased by 1.8-fold (P < 0.05) and 1.7-fold (P < 0.05) respectively, in trained rats as compared with their untrained counterparts. Serine phosphorylation of Akt-1/PKB increased 1.7-fold (P < 0.05) in trained rats in response to insulin. These findings were accompanied by increased responsiveness to insulin as demonstrated by a reduced area under the curve for insulin during an i.v. glucose tolerance test, by increased glucose disappearance rate during an insulin tolerance test, and by increased expression of glucose transporter-4.Conclusions: the increased responsiveness to insulin induced by chronic exercise in rat skeletal muscle may result, at least in part, from the modulation of the insulin signaling pathway at different molecular levels.
Resumo:
Minidosimeters of L-alanine and 2-methylalanine (2MA) were prepared and tested as potential candidates for small radiation field dosimetry. To quantify the free radicals created by radiation a K-Band (24 GHz) EPR spectrometer was used. X-rays provided by a 6 MV clinical linear accelerator were used to irradiate the minidosimeters in the dose range of 0.5-30 Gy. The dose-response curves for both radiation sensitive materials displayed a good linear behavior in the dose range indicated with 2MA being more radiation sensitive than L-alanine. Moreover, 2MA showed a smaller LLD (lower limit detection) value. The proposed system minidosimeter/K-Band spectrometer was able to detect 10 Gy EPR spectra with good signal-to-noise ratio (S/N). The overall uncertainty indicates that this system shows a good performance for the detection of dose values of 20 Gy and above, which are dose values typically used in radiosurgery treatments. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The alternate current biosusceptometry (ACB) is a biomagnetic technique used to study some physiological parameters associated with gastrointestinal (GI) tract. For this purpose it applies an AC magnetic field and measures the response originating from magnetic marks or tracers. This paper presents an equipment based on the ACB which uses anisotropic magnetoresistive (AMR) sensors and an inexpensive electronic support. The ACB-AMR developed consists of a square array of 6x6 sensors arranged in a firstorder gradiometer configuration with one reference sensor. The equipment was applied to capture magnetic images of different phantoms and to acquire gastric contraction activity of healthy rats. The results show a reasonable sensitivity and spatial-temporal resolution, so that it may be applied for imaging of phantoms and signal acquisition of the GI tract of small animals. © 2010 IEEE.
Resumo:
Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.
Resumo:
The experiment was carried out to evaluate the patterns of defoliation in plants of various heights in the same pasture of Brachiaria decumbens cv. Basilisk under continuous stocking with cattle. Four plant heights were evaluated (10, 20, 30 and 40 cm) in the same managed sward, with mean height equal to 25 cm. A randomized blocks design was used, with two replications. Defoliation frequency increased linearly along with plant height in the same pasture. Defoliation intensity, number of defoliations in leaf blade and percentage of leaf blade grazed per tiller also increased linearly along with plant height. The defoliation interval decreased linearly according to plant height. The quadratic model was adequately fitted into grazing efficiency data, reaching the highest value (98%) at the sward site with 35 cm plants. The percentage variation in signal grass height showed a negative linear response with initial plant height. The structure of the pasture, characterized by the diversity in plant heights, is simultaneously the cause and consequence of the variability in defoliation patterns in individual tillers, which occur on the horizontal plane of the pasture.
Resumo:
Piezoelectric transducers are widely used in high-resolution positioning systems. This paper reports the experimental analysis of a novel piezoelectric flextensional actuator (PFA), which is designed by using the topology-optimization method through a low-cost homodyne Michelson interferometer. By applying the J(1) - J(4) method for signal demodulation, which provides a linear and direct measurement of dynamic optical phase shift independent of fading, the nanometric displacements of the PFA were determined. Linearity and frequency response of the PFA were evaluated up to 50 kHz. PFA calibration factor and amplification rate were determined for the PFA operating in the quasi-static regime. To confirm the observed frequencies of resonance, an impedance analyzer is also utilized to measure the magnitude and phase of the PFA admittance.