126 resultados para Resistive Lines
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A cytogenetic study was carried out with 5-azacytidine (5-azaC) and etoposide (VP-16) in CHO-K1 and XRS-5 (mutant cells deficient for double-strand break rejoining) cell lines to verify the interaction effects of the drugs in terms of induction of chromosomal aberrations. 5-azaC is incorporated into DNA causing DNA hypomethylation, and VP-16 (inhibitor of topoisomerase 11 enzyme) is a potent clastogenic agent. Cells in exponential growth were treated with 5-azaC for I h, following incubation for 7 h, and posttreatment with VP16 for the last 3 h. In K1 cells, the combined treatments induced a significant reduction in the aberrations induced in the X and A (autosome) chromosomes, which are the main target for 5-azaC. However, in XRS-5 cells, the drug combination caused a significant increase in the aberrations induced in those chromosomes, but with a concomitant reduction in the randomly induced-aberrations. In addition, each cell line presented characteristic cell cycle kinetics; while the combined treatment induced an S-arrest in K1 cells, alterations in cell cycle progression were not found for XRS-5, although each drug alone caused a G2-arrest. The different cell responses presented by the cell lines may be explained on the basis of the evidence that alterations in chromatin structure caused by 5-aza-C probably occur to a different extent in K1 and XRS-5 cells, since the mutant cells present a typical hyper-condensed chromosome structure (especially the X- and A chromosomes), but, alternatively, 5-aza-C could induce reactivation of DNA repair genes in XRS-5 cells. Teratogenesis Carcinog. Mutagen. Suppl. 1:171-186, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Evaluation of TFAM and FABP4 gene polymorphisms in three lines of Nellore cattle selected for growth
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Double three-phase transmission lines are analyzed in this paper using a modal transformation model. The main attribute of this model is the use of a single real transformation matrix based on line geometrical characteristics and the Clarke matrix. Because of this, for any line point, the electrical values can be accessed for phase domain or mode domain using the considered transformation matrix and without convolution methods. For non-transposed symmetrical lines the errors between the model results and the exact modes are insignificant values. The eigenvector and eigenvalue analyses for transposed lines search the similarities among the three analyzed transposition types and the possible simplifications for a non-transposed case.
Resumo:
Eigenvector and eigenvalue analyses are carried out for double three-phase transmission lines, studying the application of a constant and real phase-mode transformation matrix and the errors of this application to mode line models. Employing some line transposition types, exact results are obtained with a single real transformation matrix based on Clarke's matrix and line geometrical characteristics. It is shown that the proposed technique leads to insignificant errors when a nontransposed case is considered. For both cases, transposed and nontransposed, the access to the electrical values (voltage and current, for example) is provided through a simple matrix multiplication without convolution methods. Using this facility, an interesting model for transmission line analysis is obtained even though the nontransposed case errors are not eliminated. The main advantages of the model are related to the transformation matrix: single, real, frequency independent, and identical for voltage and current.
Resumo:
This paper presents a hybrid way mixing time and frequency domain for transmission lines modelling. The proposed methodology handles steady fundamental signal mixed with fast and slow transients, including impulsive and oscillatory behaviour. A transmission line model is developed based on lumped elements representation and state-space techniques. The proposed methodology represents an easy and practical procedure to model a three-phase transmission line directly in time domain, without the explicit use of inverse transforms. The proposed methodology takes into account the frequency-dependent parameters of the line, considering the soil and skin effects. In order to include this effect in the state matrices, a fitting method is applied. Furthermore the accuracy of proposed the developed model is verified, in frequency domain, by a simple methodology based on line distributed parameters and transfer function related to the input/output signals of the lumped parameters representation. In addition, this article proposes the use of a fast and robust analytic integration procedure to solve the state equations, enabling transient and steady-state simulations. The results are compared with those obtained by the commercial software Microtran (EMTP), taking into account a three-phase transmission line, typical in the Brazilian transmission system.
Resumo:
This paper shows the insertion of corona effect in a transmission line model based on lumped elements. The development is performed considering a frequency-dependent line representation by cascade of pi sections and state equations. Hence, the detailed profile of currents and voltages along the line, described from a non-homogeneous system of differential equations, can be obtained directly in time domain applying numerical or analytic solution integration methods. The corona discharge model is also based on lumped elements and is implemented from the well-know Skilling-Umoto Model.