54 resultados para Removal of organic matter
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Mercury Redox Chemistry in the Negro River Basin, Amazon: The Role of Organic Matter and Solar Light
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In waterlogged environments of the upper Amazon basin, organic matter is a major driver in the podzolisation of clay-depleted laterites, especially through its ability to weather clay minerals and chelate metals. Its structure in eight organic-rich samples collected at the margin and in the centre of the podzolic area of a soil sequence was investigated. The samples illustrate the main steps in the development of waterlogged podzols and belong either to eluviated topsoil A horizons or to illuviated subsoil Bhs, Bh and 2BCs horizons. Organic matter micromorphology was described, and the overall molecular structure of their clay size fractions was assessed using Fourier transform infrared (FTIR) spectroscopy and cross polarization/magic angle spinning (CP/MAS) C-13 nuclear magnetic resonance (NMR). Organic features of the horizons strongly vary both vertically and laterally in the sequence. Topsoil A horizons are dominated by organic residues juxtaposed to clean sands with a major aliphatic contribution. In the subsoil, numerous coatings, characteristic of illuviation processes, are observed in the following horizons: (i) At the margin and bottom parts of the podzolic area, dark brown organic compounds of low aromacity with abundant oxygen-containing groups accumulate in Bhs and 2BCs horizons. Their spectroscopic features agree with the observation of cracked coatings in 2BCs and the presence of organometallic complexes, whose abundance decreases towards low lying positions. (ii) By contrast, black organic compounds of high aromacity with few chelating functions accumulate as coatings and infills in the overlying sandy Bh horizon of well-expressed waterlogged podzols. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The organic fraction of urban solid residues disposed of in sanitary landfills during the decomposition yields biogas and leachate, which are sources of pollution. Leachate is a resultant liquid from the decomposition of substances contained in solid residues and it contains in its composition organic and inorganic substances. Literature shows an increase in the use of thermoanalytical techniques to study the samples with environmental interest, this way thermogravimetry is used in this research. Thermogravimetric studies (TG curves) carried out on leachate and residues shows similarities in the thermal behavior, although presenting complex composition. Residue samples were collected from landfills, composting plants, sewage treatment stations, leachate, which after treatment, were submitted for thermal analysis. Kinetic parameters were determined using the Flynn-Wall-Ozawa method. In this case they show little divergence between the kinetic parameter that can be attributed to different decomposition reaction and presence of organic compounds in different phases of the decomposition with structures modified during degradation process and also due to experimental conditions of analysis.
Resumo:
Gold has been exploited intensively in the Brazilian Amazon during the past 20 years, and the elemental mercury (Hg) used in amalgamating the gold has caused abnormal Hg concentrations in waterways. Since 1986 particular attention has been given to the Madeira River because it is the largest tributary of the Amazon River and gold mining was officially allowed on a 350-km sector of the river. In this paper, samples of sediments from nine lakes located in the Madeira River basin, Rondonia State, Brazil, were analysed for mercury and organic matter. The average Hg content ranged between 33 and 157 ppb, which is about 8-40 times higher than the average value corresponding to 4.4 ppb for rocks occurring in the area (regional background). Significant correlation was found between the Hg content and organic matter in the sediments, indicating its importance on the retention of this heavy metal.
Resumo:
Laser-induced fluorescence (LIF) spectroscopy has been proposed as new method for determining the degree of humification of organic matter (OM) in whole soils. It can be also used to analyze the OM in whole soils containing large amounts of paramagnetic materials, and which are neither feasible to Electron Paramagnetic Resonance (EPR) nor to C-13 Nuclear Magnetic Resonance (NMR) spectroscopy. In the present study, 3 LIF spectroscopy was used to investigate the OM in a Brazilian Oxisol containing high concentration of Fe+3. Soil samples were collected from two areas under conventional tillage (CT), two areas under no-till management (NT) and from a non-cultivated (NC) area under natural vegetation. The results of LIF spectroscopic analysis of the top layer (0-5 cm) of whole soils showed a less aromatic OM in the non-cultivated than in the cultivated soils. This is consistent with data corresponding to HA samples extracted from the same soils and analyzed by EPR, NMR and conventional fluorescence spectroscopy. The OM of whole soils at 5-10 and 10-20 cm depth was also characterized by LIF spectroscopy.Analysis of samples of NT and NC soils showed a higher OM aromatic content at depth. This is a consequence of the accumulation of plant residues at the soil surface in quantities that are too large for microorganisms to metabolize fully, thus, resulting in less aromatic or less hurnified humic substances. In deeper soil layers, the input of residues was lower and further decomposition of humic substances by microorganisms continued, and the aromaticity and degree of humification increased with soil depth. This data indicates that the gradient of humification of OM in the NT soil was similar to those observed in natural soils. Nevertheless, the degree of humification of the OM in the soils under no-till management varied less than that corresponding to non-cultivated soils. This may be because the former have been managed under these practices for only 5 years, in contrast to the continuous humification process occurring in the natural soils. on the other band, LIF spectroscopic analysis of the CT soils showed less pronounced changes or no change in the degree of humification with depth. This indicates that the ploughing and harrowing involved in CT lead to homogenization of the soil and thereby also of the degree of humification of OM throughout the profile. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There is little information on nickel adsorption by Brazilian soils. The objective of this experiment was to determine the effect of pH, organic matter, and iron oxides on nickel adsorption by three soils: a clayey Anionic Rhodic Acrudox, a sandy clay loam Anionic Xanthic Acrudox, and a clayey Rhodic Hapludalf. Soil samples were collected from the 0-0.2 in layer and treated to eliminate organic matter and iron oxides. The nickel adsorption was evaluated in the original samples and in those treated to remove organic matter and to remove both, organic matter and iron oxides, using 2 g soil + 20 mL of 0.01 mol L-1 CaCl2 solution containing 5 mg L-1 Ni, pH varying from 3.5 to 7.5. The nickel adsorption decreased with the elimination of organic matter. For the samples without organic matter and iron oxides, adsorption decreased only in the Anionic Rhodic Acrudox. The pH was the main factor involved in nickel adsorption variation, and for soil samples without organic matter and iron oxides, the maximum adsorption occurred at higher pH values.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The biological nitritation/denitritation process in the removal of organic matter and nitrogen in a landfill leachate was studied, using an activated sludge sequencing batch reactor. Treatment cycles were formed by an anoxic and an aerobic phases, in which the conditions for oxidation of the influent N load and the prevalence of nitrite concentration at the end of aerobic treatment cycles were determined, as well as the use of organic matter present in the leachate as a carbon source for denitrifying organisms in the anoxic stage. The removal efficiencies of N-NO 2-at the end of the anoxic process (48h) ranged between 14 and 30%, indicating low availability of biodegradable organic matter in the leachate. As for the accumulation of N-NO 2-at the end of the aerobic phase (48h) of treatment cycles, imbalances were not observed, while 100% removal efficiencies of N and specific nitritation rates from 0.095 to 0.158kgN-NH 3/kgSSV per day were recorded, demonstrating the applicability of simplified nitrification in the treatment of effluents with low C/N ratios.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)