3 resultados para Relaxing Factor
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A strong association between the benefits of physical exercise on the cardiovascular disease with an improvement of the endothelium-derived relaxing factor production has been consistently shown. The purpose of this study was to evaluate the effect of exercise training associated with high caloric diet in the reactivity of rat mesenteric and aortic rings. Experimental protocol consisted of 4 weeks of high caloric diet consumption previous to 4 weeks of run training (1.2 km/h, 0% grade, in sessions of 60 min, 5 days/week). Concentrations of triglycerides, glucose, insulin and nitrite/nitrate levels were measured and atherogenic index was calculated. Concentration-response curves to acetylcholine (10 nM-100 mu M), sodium nitroprusside (100 pM-100 nM) and phenylephrine (1 nM-3 mu M) were obtained. Exercise training reduced body mass (6%) and triglyceride levels (about 54%), without changes in glucose and insulin concentrations. An improvement of endothelium-dependent relaxation responses to acetylcholine in mesenteric and aortic rings was observed in trained group. No changes were seen for sodium nitroprusside and phenylephrine. In conclusion, our study is the first to show clearly that run training promotes an improvement of the endothelium-dependent relaxing response in aorta and mesenteric rings from rats fed with high caloric diet and that is associated with increase of NO production. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Silicosis, a common type of pneumoconiosis, is an occupational lung disease caused by inhalation of silica dust often with mining activity and thus reaches the miners. The fine and ultrafine silica particles deposited in the alveolar epithelium may lead to the development of progressive massive fibrosis. An increased reactive oxygen species (ROS) production has been proposed to explain the mechanism for induction of pulmonary fibrosis in silicosis. In this situation, alveolar macrophages are activated to phagocytes silica particles deposited in the alveoli. The activated macrophages secrete large amounts of ROS that in turn induce synthesis of fibrotic factors. In addition, the activity of antioxidant enzymes is impaired, which results in increased lipid peroxidation, as well as generating a local inflammatory process. Diffuse pulmonary fibrosis progresses with interstitial collagen deposition. Interstitial collagen overlies small pulmonary arteries and arterioles and thus it is associated with pulmonary hypertension in pulmonary fibrotic diseases. In addition, cytokines and silica particles passing through the respiratory membrane can reach the bloodstream. In this context, the increase in the generation of ROS in the circulation may lead to a reduction in the bioavailability of nitric oxide, an important endothelium-derived relaxing factor. A deficiency in the nitric oxide bioavailability can result in vascular endothelial dysfunction. Moreover, pro-inflammatory cytokines could contribute to the impairment of endothelial function. In the airways, pro-inflammatory cytokines can reduce the smooth muscle responsiveness to β- adrenergic agonists as isoproterenol. Thus, the aim of this study was to evaluate the effect of silica dust instillation in the function of the pulmonary artery, aorta and trachea of rats with acute silicosis. For this purpose, male Wistar rats were anesthetized... (Complete abstract click electronic access below)