15 resultados para Refraction index
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Glassy films of 0.2[Sb(PO3)(3)]-0,8Sb(2)O(3) with 0.8 mum-thickness were deposited on quartz substrates by electron beam evaporation. A contraction in the film thickness (photoinduced decrease in volume) and photobleaching effect associated with a decrease of up to 25% in the index of refraction has been observed in the films after irradiation near the bandgap (3.89 eV), using the 350.7 nm (3.54 eV) Kr+ ion laser line with 2.5 W/cm(2) for 30 min. A loss of 30% in the phosphorus concentration was measured by wavelength dispersive X-ray microanalysis in the film after laser irradiation with 5.0 W/cm(2) for 1.0 h. These photoinduced changes in the samples are dependent on the power density and intensity profile of the laser beam. Using a Lloyd's mirror setup for continuous wave holography it was possible to record holographic gratings with period from 500 nm up to 20 mum and depth profile of similar to50 nm in the films after laser irradiation with 5.0 W/cm(2) for 1 h. Real-time diffraction efficiency measurements have shown that ultraviolet irradiation induces first a refractive index grating formation, and after this, the photocon traction effect takes place generating an irreversible relief grating. Diffraction efficiency up to 10% was achieved for the recorded gratings. 3D-refraction index measurements and atomic force microscopy images are presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We consider the two nonconcentric circles billiard, with the inner circle as a refringent medium, in order to study the classical dynamics of a light ray. The eccentricity controls the chaotic sea intensity and the refraction index acts on the integrable portion of the phase space, prompting the appearance and overlapping of isochrone resonances. Numerical results are presented and discussed.
Resumo:
This paper describes the effect of nitrogen Plasma Immersion Ion Implantation (PIII) on chemical structure, refraction index and surface hardness of plasma-polymerized hexamethyldisilazane (PPHMDSN) thin films. Firstly, polymeric films were deposited at 13.56 MHz radiofrequency (RF) Plasma Enhanced Chemical Vapour Deposition (PECVD) and then, were treated by nitrogen PIII from 15 to 60 min. Fourier Transformed Infrared (FTIR) spectroscopy was employed to analyse the molecular structure of the samples, and it revealed that vibrations modes at 3350 cm(-1), 2960 cm(-1), 1650 cm(-1), 1250 cm(-1) and 1050 cm(-1) were altered by nitrogen PIII. Visible-ultraviolet (vis-UV) spectroscopy was used to evaluate film refractive index and the results showed a slight increase from 1.6 to 1.8 following the implantation time. Nanoindentation revealed a surface hardness rise from 0.5 to 2.3 GPa as PIII treatment time increased. These results indicate nitrogen PIII is very promising in improving optical and mechanical properties of PPHMDSN films.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Modern industry has frequently employed ethylene glycol ethers as monomers in plasma polymerization process to produce different types of coatings. In this work we used a stainless steel plasma reactor to grow thin polymeric films from low pressure RF excited plasma of diethylene glycol dimethyl ether. Plasmas were generated at 5W RF power in the range of 16 Pa to 60 Pa. The molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and UltravioletVisible Spectroscopy, respectively. The IR spectra show C-H stretching at 3000-2900 cm(-1), C=O stretching at 1730-1650 cm(-1), C-H bending at 1440-1380 cm(-1), C-O and C-O-C stretching at 1200-1000 cm(-1). The refraction index was around 1.5 and the optical gap calculated from absorption coefficient presented value near 3.8 eV. Water contact angle of the films ranged from 40 degrees to 35 degrees with corresponding surface energy from 66 to 73x10(-7) J. Because of its favorable optical and hydrophilic characteristics these films can be used in ophthalmic industries as glass lenses coatings.
Resumo:
Silica-titania planar waveguides of different thicknesses and compositions have been produced by radio-frequency sputtering and dip coating on silica substrates. Waveguides were also produced by silver exchange on a soda-lime silicate glass substrate. Brillouin scattering of the samples has been studied by coupling the exciting laser beam with a prism to different transverse-electric (TE) modes of the waveguides, and collecting the scattered light from the front surface. In multimode waveguides, the spectra depend on the m mode of excitation. For waveguides with a step index profile, two main peaks due to longitudinal phonons are present, apart from the case of the TE0 excitation, where a single peak is observed. The energy separation between the two peaks increases with the mode index. In graded-index waveguides, m-1 peaks of comparable intensities are observed. The spectra are reproduced very well by a model which considers the space distribution of the exciting field in the mode, a simple space dependence of the elasto-optic coefficients, through the value of the refraction index, and neglects the refraction of phonons. A single-fit parameter, i.e., the longitudinal sound velocity, is used to calculate as many spectra as is the number of modes in the waveguide. (C) 2003 American Institute of Physics.
Resumo:
Glassy films of Ga10Ge25S65 with 4 mu m thickness were deposited on quartz substrates by electron beam evaporation. Photoexpansion (PE) (photoinduced increase in volume) and photobleaching (PB) (blue shift of the bandgap) effects have been examined. The exposed areas have been analyzed using perfilometer and an expansion of 1.7 mu m (Delta V/V approximate to 30%) is observed for composition Ga10Ge25S65 exposed during 180 min and 3 mW/cm(2) power density. The optical absorption edge measured for the film Ge25Ga10S65 above and below the bandgap show that the blue shift of the gap by below bandgap photon illumination is considerable higher (Delta E-g = 440 meV) than Delta E-g induced by above bandgap illumination (Delta E-g = 190 meV). The distribution of the refraction index profile showed a negative change of the refraction index in the irradiated samples (Delta n = -0.6). The morphology was examined using a scanning electron microscopy (SEM). The chemical compositions measured using an energy dispersive analyzer (EDX) indicate an increase of the oxygen atoms into the irradiated area. Using a Lloyd's mirror setup for continuous wave holography it was possible to record holographic gratings using the photoinduced effects that occur in them. Diffraction efficiency up to 25% was achieved for the recorded gratings and atomic force microscopy images are presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The nonlinear (NL) optical properties of glassy xBi2O 3-(1-x) GeO2 with x = 0.72 and 0.82 were investigated. The experiments were performed with lasers at 800 nm (pulses of 150 fs) and 532 nm (pulses of 80 ps and 250 ns). Using the Kerr gate technique, we observed that the NL response of the samples at 800 nm is faster than 150 fs. NL refraction indices, | n 2 | ≈ 5 × 10-16 cm2/W, and two-photon absorption coefficients, α 2, smaller than 0.03 cm/GW, were measured at 800 nm. At 532 nm, we measured the NL transmittance of the samples. From the results obtained, we determined α 2 ≈1 cm/GW and excited-state absorption cross-sections of ≈10-22 cm2 due to free-carriers. © 2013 AIP Publishing LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)