2 resultados para Reflectance Transformation Imaging
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Selection of the proper shade and color matching of restorations to natural dentition continues to be one of the most frustrating problems in dentistry and currently available shade guide presents a limited selection of colors compared to those found in natural dentition. This investigation evaluation if the composites resins shade B2 are equivalent to the Vita shade guide B2. Twelve composite resins (Renamel Microfill Super Brite- Cosmedent USA, Renamel Universal Brite- Cosmedent USA, Renamel Microfill Body- Cosmedent USA, Renamel Universal Body- Cosmedent USA, Opallis EB2-FGM, Opallis DB2-FGM, Filtek Supreme XT-3M/ESPE, Filtek Z250-3M/ESPE, Filtek Z350-3M/ESPE, Z100-3M/ESPE, 4 Seasons Dentin - Ivoclar/Vivadent, Tetric Ceram - Ivoclar/Vivadent) shade B2 were used. From each composite, two specimens were made in a steel matrix with 8.0 mm diameter and 10.0 mm different predetermined thickness (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 mm). The specimens were 40 seconds light polymerized by LED Ultrablue (DMC). The specimens were measured 10 times each to determine the shade using a reflectance spectrophotometer (Pocket Spec). According to results was verified that not any of composites resins shade B2 evaluated in this study presented values of color difference (ΔE) equivalent to the Vita shade guide B2 and the 2 mm thickness showed the closer match to the Vita shade guide B2.
Resumo:
The advances in digital imaging technology in dentistry have provided an alternative to film-based radiography and have given new options to detect periodontal bone loss. The purpose of this study was to compare inverted and unprocessed digitized radiographic imaging in periodontal bone loss measurements. Thirty-five film-based periapical radiographs of patients suffering from moderate to advanced untreated periodontal bone loss associated to lower premolar and molars was selected from the department files, with 40 bone loss areas. The film-based radiographs were digitized with a flatbed scanner with a transparency and radiograph adapter used for transilluminating the radiograph imaging. Digitization was performed at 600 dpi and in gray scale. The images were digitized using Image Tool software by applying image inversion, that is, transformation of radiopaque structures into radiolucent structures and vice-versa. The digital data were saved as JPEG files. The images were displayed on a 15-inch and 24-bit video monitor under reduced room lighting. One calibrated examiner performed all radiographic measurements, three times, from the cementoenamel junction to the most apical extension of the bone loss, in both types of image (inverted and unprocessed). Brightness and contrast were adjusted according to the examiner's individual demand. Intraclass correlation coefficient was used to compare the measurements from both types of images. The means of radiographic measurements, in mm, for inverted and unprocessed digitized imaging were 6.4485 and 6.3790, respectively. The intraclass correlation coefficient was significant (0.99) The inverted and unprocessed digitized radiographic images were reliable and there was no difference in the diagnostic accuracy between these images regarding periodontal bone loss measurements.