8 resultados para Real objects

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work is analyzed the contribution of the Moon on the collisional process of the Earth with asteroids (NEOs). The dynamical system adopted is the restricted four-body problem Sun-Earth-Moon-particle. Using a simple analytical approach one can verify that, the orbit of an object can be significantly affected by the Moon's gravitational field when their relative velocity is smaller than 5 km/s. Therefore, the present work is based on hypothetical asteroids whose velocities relative to Moon are of the order of 1 km/s. In fact, there are several real objects (NEOs) with such velocities at the point they cross the Earth's orbit. The net results obtained indicate that the Moon helps to avoid collisions (2.6%) more than it contributes to extra collisions (0.6%). (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A classic problem in the development of Mixed Reality systems is the registration. The correct alignment between virtual objects and the real elements is extremely important for the coherent composition of the resultant scene. Considering this context, this paper describes an approach for the composition of scenes in Mixed Reality environments using the chromakey technique for the extraction of real objects. After that, the scene is mounted in a coherent way related to the depth in OpenGL framebuffer for posterior rendering. ©2007 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed through two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. However, this methods can generate very detailed virtual elements, that can result in some problems when processing the resulting mesh, because it has a lot of edges and polygons that have to be checked at visualization. Considering this context, it can be applied simplification algorithms to eliminate polygons from resulting mesh, without change its topology, generating a lighter mesh with less irrelevant details. The project aimed the study, implementation and comparative tests of simplification algorithms applied to meshes generated through a reconstruction pipeline based on point clouds. This work proposes the realization of the simplification step, like a complement to the pipeline developed by (ONO et al., 2012), that developed reconstruction through cloud points obtained by Microsoft Kinect, and then using Poisson algorithm

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed in two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. Multiresolution reconstruction methods can generate polygonal meshes in different levels of detail and, to improve the response time of a computer program, distant objects can be represented with few details, while more detailed models are used in closer objects. This work presents a new approach to multiresolution surface reconstruction, particularly interesting to noisy and low definition data, for example, point clouds captured with Kinect sensor

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are considerations of that the education of Physics of the way as comes being driven us textbooks and consequently in classroom, is distant and distorted of their real purpose. We notice that the education of this science through the Physical school discipline, has I assume a character of preparation for university entrance exams exercises resolution, exceling for the memorization of formulae and by the mathematical solutions, fact that looks to cause to it is lacking of motivation and to the disinterest of the students regarding his contents. Since we are surrounded by phenomena, events, elements of the nature, new technologies, objects and so many others that can be explained and many times until applied and/or reproduced by means of physical concepts, there is no reason for treat to Physical as somewhat academic and remote of the reality. The little interest of high school students by the discipline of Physics and their poor performance in the learning of his contents has led to the search of new paths, resources and strategies that promote a more meaningful learning. Taking into account these facts, we seek in this course conclusion work, observe, analyze and apply concepts of the Physical one in multiple elements of ours routine, doing use of the interdisciplinary nature as a possible mechanism. The animals exert a fascination on most people. Much of what we see in their way of being and behaving can be explained by the laws of Physics and its models. Their physique, behavior and activities involve diverse movements, communication and sensing as physical limitations varied. Zoologists and physicists build models in an attempt to explain or understand animal behavior using well-established physical principles. The creation of physical models is going to approach a problem, identifies the fundamental information and removing all of the irrelevant details. An example... (Complete abstract click electrnic access below)