191 resultados para Radial distribution networks

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacitor placement (replacement) problem for radial distribution networks determines capacitor types, sizes, locations and control schemes. Optimal capacitor placement is a hard combinatorial problem that can be formulated as a mixed integer nonlinear program. Since this is a NP complete problem (Non Polynomial time) the solution approach uses a combinatorial search algorithm. The paper proposes a hybrid method drawn upon the Tabu Search approach, extended with features taken from other combinatorial approaches such as genetic algorithms and simulated annealing, and from practical heuristic approaches. The proposed method has been tested in a range of networks available in the literature with superior results regarding both quality and cost of solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacitor placement problem for radial distribution networks aims to determine capacitor types, sizes, locations and control scheme. This is a combinatorial problem that can be formulated as a mixed integer nonlinear program. The paper presents an algorithm inspired in artificial immune systems and developed for this specific problem. A good performance was obtained through experimental tests applied to known systems. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutral wire in most power flow software is usually merged into phase wires using Kron's reduction. Since the neutral wire and the ground are not explicitly represented, neutral wire and ground currents and voltages remain unknown. In some applications, like power quality and safety analyses, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of special interest. In this paper, a general power flow algorithm for three-phase four-wire radial distribution networks, considering neutral grounding, based on backward-forward technique, is proposed. In this novel use of the technique, both the neutral wire and ground are explicitly represented. A problem of three-phase distribution system with earth return, as a special case of a four-wire network, is also elucidated. Results obtained from several case studies using medium- and low-voltage test feeders with unbalanced load, are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unbalance and harmonics are two major distortions in the three-phase distribution systems. In this paper an investigation into unbalance phenomena in the distribution networks using instantaneous space vector theory, is presented. Power oscillation index (POI) and effective power factor (PFe) are calculated in the network nodes for several unbalance loading conditions. For system analysis a general power flow algorithm for three-phase four-wire radial distribution networks, based on backward-forward technique, is applied. Results obtained from several case studies using medium and low voltage test feeder with unbalanced load, are presented and discussed. © 2010 Praise Worthy Prize S.r.l. - All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot radial distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high active and reactive power level demanded by the distribution systems, the growth of consuming centers, and the long lines of the distribution systems result in voltage variations in the busses compromising the quality of energy supplied. To ensure the energy quality supplied in the distribution system short-term planning, some devices and actions are used to implement an effective control of voltage, reactive power, and power factor of the network. Among these devices and actions are the voltage regulators (VRs) and capacitor banks (CBs), as well as exchanging the conductors sizes of distribution lines. This paper presents a methodology based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimized allocation of VRs, CBs, and exchange of conductors in radial distribution systems. The Multiobjective Genetic Algorithm (MGA) is aided by an inference process developed using fuzzy logic, which applies specialized knowledge to achieve the reduction of the search space for the allocation of CBs and VRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mixed-integer linear programming approach to solving the optimal fixed/switched capacitors allocation (OCA) problem in radial distribution systems with distributed generation. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mixed-integer linear programming model to solve the conductor size selection and reconductoring problem in radial distribution systems. In the proposed model, the steady-state operation of the radial distribution system is modeled through linear expressions. The use of a mixed-integer linear model guarantees convergence to optimality using existing optimization software. The proposed model and a heuristic are used to obtain the Pareto front of the conductor size selection and reconductoring problem considering two different objective functions. The results of one test system and two real distribution systems are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. © 1969-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mixed-integer linear programming model to solve the problem of allocating voltage regulators and fixed or switched capacitors (VRCs) in radial distribution systems. The use of a mixed-integer linear model guarantees convergence to optimality using existing optimization software. In the proposed model, the steady-state operation of the radial distribution system is modeled through linear expressions. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. An heuristic to obtain the Pareto front for the multiobjective VRCs allocation problem is also presented. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mixed-integer linear programming approach to solving the problem of optimal type, size and allocation of distributed generators (DGs) in radial distribution systems. In the proposed formulation, (a) the steady-state operation of the radial distribution system, considering different load levels, is modeled through linear expressions; (b) different types of DGs are represented by their capability curves; (c) the short-circuit current capacity of the circuits is modeled through linear expressions; and (d) different topologies of the radial distribution system are considered. The objective function minimizes the annualized investment and operation costs. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique.© 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method for calculating the power flow in distribution networks considering uncertainties in the distribution system. Active and reactive power are used as uncertain variables and probabilistically modeled through probability distribution functions. Uncertainty about the connection of the users with the different feeders is also considered. A Monte Carlo simulation is used to generate the possible load scenarios of the users. The results of the power flow considering uncertainty are the mean values and standard deviations of the variables of interest (voltages in all nodes, active and reactive power flows, etc.), giving the user valuable information about how the network will behave under uncertainty rather than the traditional fixed values at one point in time. The method is tested using real data from a primary feeder system, and results are presented considering uncertainty in demand and also in the connection. To demonstrate the usefulness of the approach, the results are then used in a probabilistic risk analysis to identify potential problems of undervoltage in distribution systems. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutral wire in most existing power flow and fault analysis software is usually merged into phase wires using Kron's reduction method. In some applications, such as fault analysis, fault location, power quality studies, safety analysis, loss analysis etc., knowledge of the neutral wire and ground currents and voltages could be of particular interest. A general short-circuit analysis algorithm for three-phase four-wire distribution networks, based on the hybrid compensation method, is presented. In this novel use of the technique, the neutral wire and assumed ground conductor are explicitly represented. A generalised fault analysis method is applied to the distribution network for conditions with and without embedded generation. Results obtained from several case studies on medium- and low-voltage test networks with unbalanced loads, for isolated and multi-grounded neutral scenarios, are presented and discussed. Simulation results show the effects of neutrals and system grounding on the operation of the distribution feeders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problems of wave propagation and power flow in the distribution network composed of an overhead wire parallel to the surface of the ground have not been satisfactorily solved. While a complete solution of the actual problem is impossible, as it is explained in the famous Carson's paper (1926), the solution of the problem, where the actual earth is replaced by a plane homogenous semi-infinite solid, is of considerable interest. In this paper, a power flow algorithm in distribution networks with earth return, based on backward-forward technique, is discussed. In this novel use of the technique, the ground is explicitly represented. In addition, an iterative method for determining impedance for modelling ground effect in the extended power flow algorithm is suggested. Results obtained from single-wire and three-wire studies using IEEE test networks are presented and discussed. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparison of reactive power support in distribution networks provided by switched Capacitor Banks (CBs) and Distributed Generators (DGs). Regarding switched CBs, a Tabu Search metaheuristic algorithm is developed to determine their optimal operation with the objective of reducing the power losses in the lines on the system, while meeting network constraints. on the other hand, the optimal operation of DGs is analyzed through an evolutionary Multi-Objective (MO) programming approach. The objectives of such approach are the minimization of power losses and operation cost of the DGs. The comparison of the reactive power support provided by switched CBs and DGs is carried out using a modified IEEE 34 bus distribution test system.