10 resultados para RTK
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Several positioning techniques have been developed to explore the GPS capability to provide precise coordinates in real time. However, a significant problem to all techniques is the ionosphere effect and the troposphere refraction. Recent researches in Brazil, at São Paulo State University (UNESP), have been trying to tackle these problems. In relation to the ionosphere effects it has been developed a model named Mod_Ion. Concerning tropospheric refraction, a model of Numerical Weather Prediction(NWP) has been used to compute the zenithal tropospheric delay (ZTD). These two models have been integrated with two positioning methods: DGPS (Differential GPS) and network RTK (Real Time Kinematic). These two positioning techniques are being investigated at São Paulo State University (UNESP), Brazil. The in-house DGPS software was already finalized and has provided very good results. The network RTK software is still under development. Therefore, only preliminary results from this method using the VRS (Virtual Reference Station) concept are presented.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
After removal of the Selective Availability in 2000, the ionosphere became the dominant error source for Global Navigation Satellite Systems (GNSS), especially for the high-accuracy (cm-mm) demanding applications like the Precise Point Positioning (PPP) and Real Time Kinematic (RTK) positioning.The common practice of eliminating the ionospheric error, e. g. by the ionosphere free (IF) observable, which is a linear combination of observables on two frequencies such as GPS L1 and L2, accounts for about 99% of the total ionospheric effect, known as the first order ionospheric effect (Ion1). The remaining 1% residual range errors (RREs) in the IF observable are due to the higher - second and third, order ionospheric effects, Ion2 and Ion3, respectively. Both terms are related with the electron content along the signal path; moreover Ion2 term is associated with the influence of the geomagnetic field on the ionospheric refractive index and Ion3 with the ray bending effect of the ionosphere, which can cause significant deviation in the ray trajectory (due to strong electron density gradients in the ionosphere) such that the error contribution of Ion3 can exceed that of Ion2 (Kim and Tinin, 2007).The higher order error terms do not cancel out in the (first order) ionospherically corrected observable and as such, when not accounted for, they can degrade the accuracy of GNSS positioning, depending on the level of the solar activity and geomagnetic and ionospheric conditions (Hoque and Jakowski, 2007). Simulation results from early 1990s show that Ion2 and Ion3 would contribute to the ionospheric error budget by less than 1% of the Ion1 term at GPS frequencies (Datta-Barua et al., 2008). Although the IF observable may provide sufficient accuracy for most GNSS applications, Ion2 and Ion3 need to be considered for higher accuracy demanding applications especially at times of higher solar activity.This paper investigates the higher order ionospheric effects (Ion2 and Ion3, however excluding the ray bending effects associated with Ion3) in the European region in the GNSS positioning considering the precise point positioning (PPP) method. For this purpose observations from four European stations were considered. These observations were taken in four time intervals corresponding to various geophysical conditions: the active and quiet periods of the solar cycle, 2001 and 2006, respectively, excluding the effects of disturbances in the geomagnetic field (i.e. geomagnetic storms), as well as the years of 2001 and 2003, this time including the impact of geomagnetic disturbances. The program RINEX_HO (Marques et al., 2011) was used to calculate the magnitudes of Ion2 and Ion3 on the range measurements as well as the total electron content (TEC) observed on each receiver-satellite link. The program also corrects the GPS observation files for Ion2 and Ion3; thereafter it is possible to perform PPP with both the original and corrected GPS observation files to analyze the impact of the higher order ionospheric error terms excluding the ray bending effect which may become significant especially at low elevation angles (Ioannides and Strangeways, 2002) on the estimated station coordinates.
Resumo:
To prevent large errors in the GPS positioning, cycle slips should be detected and corrected. Such procedure is not trivial, mainly for single frequency receivers, but normally it is not noticed by the users. Thus, it will be discussed some practical and more used methods for cycle slips detection and correction using just GPS single-frequency observations. In the detection, the triple (TD) and tetra differences were used. In relation to the correction, in general, each slip is corrected in the preprocessing. Otherwise, other strategies should be adopted during the processing. In this paper, the option was to the second option, and two strategies were tested. In one of them, the elements of the covariance matrix of the involved ambiguities are modified and new ambiguity estimation starts. In the one, a new ambiguity is introduced as additional unknown when a cycle slip is detected. These possibilities are discussed and compared in this paper, as well as the aspects related to the practicity, implementation and viability of each one. Some experiments were carried out using simulated data with cycle slips in different satellites and epochs of the data. This allowed assessing and comparing the results of different occurrence of cycle slip and correction in several conditions.
Resumo:
Na aplicação de produtos fitossanitários, a utilização de equipamentos que controlam automaticamente as seções da barra e a pulverização já é realidade; entretanto, ainda não há resultados que demonstrem a sua eficácia. Por esse motivo, este trabalho teve por finalidade desenvolver uma metodologia para a avaliação de um equipamento que controla automaticamente as seções e a pulverização. Avaliou-se um controlador automático de seções e pulverização de mercado, e, para tanto, foram utilizados três níveis de acurácia do sinal de GPS (algoritmo interno, SBAS e RTK), três ângulos para a simulação de entrada e saída da barra de pulverização em relação à borda do talhão (0; 45 e 60º ) e três velocidades de trabalho (1,66; 5,00 e 8,33 m s-1). A metodologia proposta possibilitou a determinação dos tempos e distâncias de abertura e fechamento das seções. Os coeficientes de variação para os tempos e distâncias de abertura e fechamento das seções indicaram uma variação considerável. Houve interações significativas em função do tipo de sinal de GPS. A configuração recomendada pelo fabricante e adotada para a avaliação do controlador automático de seções e pulverização não atende a todas as situações simuladas.
Resumo:
Nowadays, with the implantation of GNSS (Global Navigation Satellite System) reference station networks, several positioning techniques have been developed and/or improved. Using such kind of network data it is possible to model the GNSS distance dependent errors and to compute correction terms for the network region. Several methods have been developed to formulate the corrections terms from network stations data. A method that has been received a great attention is the Virtual Reference Station (VRS). The idea is that the VRS data resemble as much as possible a real receiver data placed in the same local. Therefore, the user has the possibility of using the VRS as if it were a real reference station in your proximities, and to accomplish the relative positioning with a single frequency receiver. In this paper it is described a different methodology applied to implement the VRS concept, using atmospheric models developed by Brazilian researchers. Besides, experiments for evaluating the quality of generated VRS are presented, showing the efficiency of the proposed method.
Resumo:
In the past few years several GPS (Global Position System) positioning techniques have been develope and/or improved with the goal of obtaining high accuracy and productivity in real time. The reference station network concept besides to enabling quality and reliability in positioning for scientific and civil GPS community, allows studies concerning tropospheric refraction modeling in the network region. Moreover, among the network corrections transmission methods available to users, there is the VRS (Virtual Reference Station) concept. In this method, the data of a virtual station are generated near the rover receiver (user). This provides a short baseline and the user has the possibility of using a single frequency receiver to accomplish the relative positioning. In this paper, the methodology applied to generate VRS data, using different tropospheric models is described. Thus, comparative tests were conducted in the four seasons with the NWP/INPE (Numerical Weather Prediction/National Institute for Space Research) and Hopfield tropospheric models. In order to analyse the VRS data quality, it was used the Precise Point Positioning (PPP) method, where satisfactory results were found. Mean differences between PNT/INPE and Hopfield models of 9.75% and 24.2% for the hydrostatic and wet days, respectively were obtained.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)