4 resultados para RODINIA
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The mafic/ultramafic Ipanema Layered Complex (ILC), Minas Gerais Brazil, consists of seven individual bodies. These units crosscut polyphase orthogneisses and interlayered paragneisses of the Paleoproterozoic Juiz de Fora Complex. Intrusive granitoids tectonically related to [lie Neoproterozoie Aracuai orogen are also present in the study area.A Sm-Nd whole-rock linear array for seven samples metapyoxenites, metaperidotiles, metagabbro. and meta-anorthosite) from the Santa Cruz massif, the largest body of the ILC. suggest that it was emplaced at 1104 +/- 78 Ma the original magma was derived from a depleted mantle source (epsilon(Ndt)= +3.8). U-Pb single-grain zircon stud of a meta-anorthosite yields all upper intercept age of 1719 +/- 4 Ma, which is interpreted to represent inheritance. The lower intercept at 630+/-3 Ma indicates (hat a Neoproterozoic tectonothermal episode overprinted the ILC, this event occurred under upper-amphiolite-, to granulite-facies conditions. The 630 Ma episode is consistent with the timing of regional metamorphism and deformation of the adjacent Aracuai orogen (Brasiliano collage). Emplacement of the ILC and other coeval metamafies and meta-ultramafics (of alkaline affinity) in the re, oil is attributed to early extension tectonics, accompanying accretion of the Rodinia super- continent during the Mesoproterozoic-Neoproterozoic time boundary.
Resumo:
Whole rock Pb isotope data can be used to determine the provenance of different blocks within the Rodinia supercontinent, providing a test for paleogeographic reconstructions. Calculated isotopic values for the source region of the Grenville-deformed SW Amazon craton (Rondonia, Brazil), anchored by published U-Pb zircon ages, are compared to those from the Grenville belt of North America and Grenvillian basement inliers in the southern Appalachians. Both the SW Amazon craton and the allochthonous Blue Ridge/Mars Hill terrane are defined by a similar Pb isotopic signature, indicating derivation from an ancient source region with an elevated U/Pb ratio. In contrast, the Grenville Province of Laurentia (extending from Labrador to the Llano Uplift of Texas) is characterized by a source region with a distinctly lower, time-integrated U/Pb ratio. Published U-Pb zircon ages (ca. 1.8 Ga) and Nd model ages (1.4-2.2 Ga) for the Blue Ridge/Mars Hill terrane also suggest an ancient provenance very different from the rest of the adjacent Grenville belt, which is dominated by juvenile 1.3-1.5 Ga rocks. The presence of mature continental material in rocks older than 1.15 Ga in the Blue Ridge/ Mars Hill terrane is consistent with characteristics of basement rocks from the SW Amazon craton. High-grade metamorphism of the Blue Ridge/Mars Hill basement resulted in purging of U, consistent with observations of the rest of the North American Grenville province. In contrast, the Grenvillian metamorphic history of the Amazon appears to have been much more heterogeneous, with both U enrichment and U depletion recorded locally. We propose that the Blue Ridge/ Mars Hill portion of the Appalachian basement is of Amazonian provenance and was transferred to Laurentia during Grenvillian orogenesis after similar to1.15 Ga. The presence of these Amazonian rocks in southeastern Laurentia records the northward passage of the Amazon craton along the Laurentian margin, following the original collision with southernmost Laurentia at ca. 1.2 Ga. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a review on the geotectonic framework of the Southeastern Brazil and neighborhoods, and its importance in the regional geologic evolution, which was exposed as a main conference at the XI Symposium of Southeast Geology (São Pedro, SP, 2009). Although the geologic history dates back to the Archean, and Paleo to Mesoproterozoic processes related to the evolution of the Columbia and Rodinia supercontinents occurred, it was in the Neoproterozoic that the most important structural features developed due to collisional tectonics. The collisions began in the Brasiliano I (900-700 Ma), but mainly developed during the Brasiliano II (670-530 Ma) and ended in the Brasiliano III (580-490 Ma), resulting the orogenic systems of Mantiqueira and Tocantins. The final consolidation resulted in Gondwana, around 460 My in the part which correspond to the South America Platform. The structural features represent an important heritage that controlled much the Phanerozic geologic and tectonic processes: the formation of the Paraná Basin in the Ordovician-Jurassic, the South Atlantian reactivation (active magmatism and Paraná LIP, rifting, morphogenesis and the Atlantic opening), and the Neogene-Quaternary intraplate discrete neotectonism.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)