4 resultados para RESEARCH REACTOR

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiopharmaceuticals are substances marked with radionuclides that can be used for detection and treatment of cancer, infections and inflammatory diseases. They emit several types of radiation through different decay routes, each radioisotope with its specific properties and uses. They can usually be produced from several different materials, by bombardment with particle beams in a nuclear research reactor or cyclotron, depending on their characteristics. Brazil has four public institutions which produce - or import - and distribute radiopharmaceuticals to hospitals and clinics throughout its territory. The largest such institution, Ipen, distributes 97% of radiopharmaceuticals used in the country. Some radiopharmaceuticals decay very quickly, meaning they must be produced and quickly administered to the patient in the same location, presenting a logistical challenge. Nuclear medicine in Brazil is a promising field and has been steadily growing, although rigid laws and a lack of qualified work force hinder Research and Development efforts for new radiopharmaceuticals. The construction of a new nuclear research reactor, in 2016, should generate self-sufficiency and economy in radiopharmaceutical production and avoid a future crisis in the supply of technetium-99m, the most important radioisotope, used in over 80% of procedures with radiopharmaceuticals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L(-1), followed by chlorine doses of 10, 20 and 30 mg.L(-1), respectively. After the sequential ozone/chlorine process, the mean reduction in chemical oxygen demand ranged from 9 to 37%. Total coliform inactivation ranged from 1.59 to 3.73 log10, and E. coli was always <1 CFU 100 mL(-1). Ozonation resulted in the formation of aldehydes, which were not significantly impacted by the subsequent chlorine dose (P ≤ 0.05).