12 resultados para REINFORCEMENT OMISSION EFFECT
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aims of this study were (1) to synthesize and characterize random and aligned nanocomposite fibers of multi-walled carbon nanotubes (MWCNT)/nylon-6 and (2) to determine their reinforcing effects on the flexural strength of a dental resin composite.Nylon-6 was dissolved in hexafluoropropanol (10 wt%), followed by the addition of MWCNT (hereafter referred to as nanotubes) at two distinct concentrations (i.e., 0.5 or 1.5 wt%). Neat nylon-6 fibers (without nanotubes) were also prepared. The solutions were electrospun using parameters under low- (120 rpm) or high-speed (6000 rpm) mandrel rotation to collect random and aligned fibers, respectively. The processed fiber mats were characterized by scanning (SEM) and transmission (TEM) electron microscopies, as well as by uni-axial tensile testing. To determine the reinforcing effects on the flexural strength of a dental resin composite, bar-shaped (20 x 2 x 2 mm(3)) resin composite specimens were prepared by first placing one increment of the composite, followed by one strip of the mat, and one last increment of composite. Non-reinforced composite specimens were used as the control. The specimens were then evaluated using flexural strength testing. SEM was done on the fractured surfaces. The data were analyzed using ANOVA and the Tukey's test (alpha=5%).Nanotubes were successfully incorporated into the nylon-6 fibers. Aligned and random fibers were obtained using high- and low-speed electrospinning, respectively, where the former were significantly (p<0.001) stronger than the latter, regardless of the nanotubes'presence. Indeed, the dental resin composite tested was significantly reinforced when combined with nylon-6 fibrous mats composed of aligned fibers (with or without nanotubes) or random fibers incorporated with nanotubes at 0.5 wt%. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Statement of problem. Implant overdenture prostheses are prone to acrylic resin fracture because of space limitations around the implant overdenture components.Purpose. The purpose of this study was to evaluate the influence of E-glass fibers and acrylic resin thickness in resisting acrylic resin fracture around a simulated overdenture abutment.Material and methods. A model was developed to simulate the clinical situation of an implant overdenture abutment with varying acrylic resin thickness (1.5 or 3.0 mm) with or without E-glass fiber reinforcement. Forty-eight specimens with an underlying simulated abutment were divided into 4 groups (n=12): 1.5 mm acrylic resin without E-glass fibers identified as thin with no E-glass fiber mesh (TN-N); 1.5 mm acrylic resin with E-glass fibers identified as thin with E-glass fiber mesh (TN-F); 3.0 mm acrylic resin without E-glass fibers identified as thick without E-glass fiber mesh (TK-N); and 3.0 mm acrylic resin with E-glass fibers identified as thick with E-glass fiber mesh (TK-F). All specimens were submitted to a 3-point bending test and fracture loads (N) were analyzed with a 2-way ANOVA and Tukey's post hoc test (alpha=.05).Results. The results revealed significant differences in fracture load among the 4 groups, with significant effects from both thickness (P<.001) and inclusion of the mesh (P<.001). Results demonstrated no interaction between mesh and thickness (P=.690). The TN-N: 39 +/- 5 N; TN-F: 50 +/- 6.9 N; TK-N: 162 +/- 13 N; and TK-F: 193 +/- 21 N groups were all statistically different (P<.001).Conclusions. The fracture load of a processed, acrylic resin implant-supported overdenture can be significantly increased by the addition of E-glass fibers even when using thin acrylic resin sections. on a relative basis, the increase in fracture load was similar when adding E-glass fibers or increasing acrylic resin thickness. (J Prosthet Dent 2011;106:373-377)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Joro spider toxin (JSTX-3), derived from Nephila clavata, has been found to block glutamate excitatory activity. Epilepsy has been studied in vitro, mostly on rat hippocampus, through brain slices techniques. The aim of this study is to verify the effect of the JSTX-3 on the epileptiform activity induced by magnesium-free medium in rat CA1 hippocampal neurons. Experiments were performed on hippocampus slices of control and pilocarpine-treated Wistar rats, prepared and maintained in vitro. Epileptiform activity was induced through omission of magnesium from the artificial cerebrospinal fluid (0-Mg2+ ACSF) superfusate and iontophoretic application of N-methyl-D-aspartate (NMDA). Intracellular recordings were obtained from CA] pyramidal neurons both of control and epileptic rats. Passive membrane properties were analyzed before and after perfusion with the 0-Mg2+ ACSF and the application of toxin JSTX-3. During the ictal-like activity, the toxin JSTX-3 was applied by pressure ejection, abolishing this activity. This effect was completely reversed during the washout period 2. when the slices were formerly perfused with artificial cerebrospinal fluid (ACSF) and again with 0-Mg2+ ACSF. Our results suggest that the toxin JSTX-3 is a potent blocker of induced epileptiform activity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resinObjectives: The purpose of this study was to evaluate the flexural strength and Vickers hardness of a microwave energy heat-cured acrylic resin by adding different concentrations of silane surface-treated nanoparticle silica.Methods: Acrylic resin specimens with dimensions of 65 x 10 x 2.5 mm were formed and divided into five experimental groups (n = 10) according to the silica concentration added to the acrylic resin mass (weight %) prior to polymerisation : G1, without silica; G2, 0.1% silica; G3, 0.5% silica; G4, 1.0% silica; and G5, 5.0% silica. The specimens were submitted to a three-point flexural strength test and to the Vickers hardness test (HVN). The data obtained were statistically analysed by ANOVA and the Tukey test (alpha = 0.05).Results: Regarding flexural strength, G5 differed from the other experimental groups (G1, G2, G3 and G4) presenting the lowest mean, while G4 presented a significantly higher mean, with the exception of group G3. Regarding Vickers hardness, a decrease in values was observed, in which G1 presented the highest hardness compared with the other experimental groups.Conclusion: Incorporating surface-treated silica resulted in direct benefits in the flexural strength of the acrylic resin activated by microwave energy; however, similar results were not achieved for hardness.
Resumo:
During the winding process of HTS coils the tapes of Bi-2223 are subjected to the influence of bending strain, axial strain, compressive force and torsional deformation resulting in I-c degradation. In the literature the effects of the individual strain components are separately analyzed in spite of during coil winding and energizing the strain-stress effects are combined. In this work using commercial tapes of Bi-2223 Ag/AgMg with and without stainless steel reinforcement several samples were wound on cylindrical FRP G-10 holder in which different combined strains are applied. Measurements of I - V characteristic curves are done to determine the degree of critical current degradation and the operational limits. The results are compared with the I, values of short samples and other specimens subjected to deformation generated by loading types such as tensile and bending strain.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Knowledge of plant nutritional status allows an understanding of the physiological responses of plants to crop fertilization. A hydroponic experiment evaluated the symptoms of macronutrient deficiency in cauliflower 'Verona'and determined: a) the macronutrient contents of foliar tissues when visual symptoms were observed, b) macronutrients content of foliar and inflorescence tissues at harvest. The effect of nutrient deficiency on inflorescence mass was also evaluated. Nitrogen deficiency caused chlorosis followed by purple color in the old leaves, while P deficiency caused only chlorosis in old leaves. Chlorosis at the edge of old leaves progressing to the center of the leaves was observed with the omission of K, and after was observed necrosis in the chlorotic areas. Ca deficiency caused tip burn in new leaves, while Mg deficiency caused internerval chlorosis in old leaves. The omission of eachmacronutrient reduced inflorescence dry matter. This deleterious effect was larger for N, P, and K deficiencies, reducing inflorescence dry matter by 87, 49, and 42%, respectively. When the nutrient solutions without N, P, K, Ca, or Mg were supplied to cauliflower plants, the macronutrient contents at harvest were 8.8, 0.6, 3.5, 13.0, and 0.8 g kg(-1) in the foliar tissues and 27.3, 2.2, 21.6, 1.1, and 0.7 g kg(-1) in the inflorescence tissues, respectively.