3 resultados para RAT RETINA
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Retinopathy, a common complication of diabetes, is characterized by an unbalanced production of nitric oxide (NO), a process regulated by nitric oxide synthase (NOS). We hypothesized that retinopathy might stem from changes in the insulin receptor substrate (IRS)/PI3K/AKT pathway and/or expression of NOS isoforms. Thus, we analysed the morphology and apoptosis index in retinas of obese rats in whom insulin resistance had been induced by a high-fat diet (HFD). Immunoblotting analysis revealed that the retinal tissue of HFD rats had lower levels of AKT1, eNOS and nNOS protein than those of samples taken from control animals. Furthermore, immunohistochemical analyses indicated higher levels of iNOS and 4-hydroxynonenal and a larger number of apoptotic nuclei in HFD rats. Finally, both the inner and outer retinal layers of HFD rats were thinner than those in their control counterparts. When considered alongside previous results, these patterns suggest two major ways in which HFD might impact animals: direct activity of ingested fatty acids and/or via insulin-resistance-induced changes in intracellular pathways. We discuss these possibilities in further detail and advocate the use of this animal model for further understanding relationships between retinopathy, metabolic syndrome and type 2 diabetes. © 2012 John Wiley & Sons, Ltd.
Resumo:
Müller cells provide nutrition for neural cells. We studied the structure and ultrastructure of Müller cells in the retina of thirty 3-month old Wistar rats, divided equally into 3 groups: normal rats, alloxan diabetic rats and treated alloxan diabetic rats, 1 and 12 months after induction of diabetes. We observed that the Müller cell nuclei under light microscope examination had hexagonal shape and higher density than the other nuclei. Differences between groups could be observed only by electron microscopy. In the diabetic rats, Müller cells presented dispersion of nuclear chromatin and electrondense nuclear granulations, with the presence of increased glycogen, dense bodies and lysosomes in the cytoplasm. The alterations were more frequent in the perivascular region and at 12 months. The treated diabetic rats exhibited some alterations we observed in diabetic rats, but these alterations were less intense. We conclude that, despite the treatment, the diabetic retinopathy continues to evolve.
Resumo:
Age-related morphological, ultrastructural and morphometric changes in the capillaries of the superficial and deep plexuses of the rat retina were studied in animals aged from 3 to 15 months. Our results suggest that age-related morphological alterations start occurring in the retina of rats at about 12 months of age. Increased glycogen deposits, pinocytotic vesicles, residual bodies and cell debris were observed in both the endothelial and pericytic cells of 12- and 15-month-old animals. In addition, heterogeneous osmiophilic accumulations, electron-transparent spaces were observed in the basement membrane as well as projections of the basement membrane towards the neighboring cells. Morphometric examination of the two vascular plexuses studied did not show differences in the area of the endothelial or pericytic cells, basement membrane or vascular lumen between rats of different ages.