13 resultados para RAT HYPOTHALAMIC ASTROCYTES
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Numerous functions have been attributed to the Edinger-Westphal nucleus (EW), including those related to feeding behavior, pain control, alcohol consumption and the stress response. The EW is thought to consist of two parts: one controls accommodation, choroidal blood flow and pupillary constriction, primarily comprising cholinergic cells and projecting to the ciliary ganglion; and the other would be involved in the non-ocular functions mentioned above, comprising peptide-producing neurons and projecting to the brainstem, spinal cord and prosencephalic regions. Despite the fact that the EW is well known, its connections have yet to be described in detail. The aim of this work was to produce a map of the hypothalamic sources of afferents to the EW in the rat. We injected the retrograde tracer Fluoro-Gold into the EW, and using biotinylated dextran amine, injected into afferent sources as the anterograde control. We found retrogradely labeled cells in the following regions: subfornical organ, paraventricular hypothalamic nucleus, arcuate nucleus, lateral hypothalamic area, zona incerta, posterior hypothalamic nucleus, medial vestibular nucleus and cerebellar interpositus nucleus. After injecting BDA into the paraventricular hypothalamic nucleus, lateral hypothalamic area and posterior hypothalamic nucleus, we found anterogradely labeled fibers in close apposition to and potential synaptic contact with urocortin 1-immunoreactive cells in the EW. On the basis of our findings, we can suggest that the connections between the EW and the hypothalamic nuclei are involved in controlling stress responses and feeding behavior. © 2013 The Authors.
Resumo:
The hypothalamus plays especially important roles in various endocrine, autonomic, and behavioral responses that guarantee the survival of both the individual and the species. In the rat, a distinct hypothalamic defensive circuit has been defined as critical for integrating predatory threats, raising an important question as to whether this concept could be applied to other prey species. To start addressing this matter, in the present study, we investigated, in another prey species (the mouse), the pattern of hypothalamic Fos immunoreactivity in response to exposure to a predator (a rat, using the Rat Exposure Test). During rat exposure, mice remained concealed in the home chamber for a longer period of time and increased freezing and risk assessment activity. We were able to show that the mouse and the rat present a similar pattern of hypothalamic activation in response to a predator. of particular note, similar to what has been described for the rat, we observed in the mouse that predator exposure induces a striking activation in the elements of the medial hypothalamic defensive system, namely, the anterior hypothalamic nucleus, the dorsomedial part of the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus. Moreover, as described for the rat, predator-exposed mice also presented increased Fos levels in the autonomic and parvicellular parts of the paraventricular hypothalamic nucleus, lateral preoptic area and subfornical region of the lateral hypothalamic area. In conclusion, the present data give further support to the concept that a specific hypothalamic defensive circuit should be preserved across different prey species. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Stress induced a decrease in the reactivity of the aorta to noradrenaline (NA), as a consequence of an endothelial nitric oxide (NO) system hyperactivity. The main characteristic of the stress response is activation of the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic adrenomedullary (SA) system. The participation of the HPA axis and SA system in the decreased reactivity to NA in the aorta of rats exposed to 4-h immobilization was investigated. Concentration-response relationships for NA were obtained in the aorta, with and without endothelium, isolated from normal and stressed rats, following these procedures: (1) in the absence and presence of L-NAME; (2) after adrenalectomy (ADX) or not, in the absence or presence of L-NAME; (3) ADX rats treated or not with corticosterone; (4) ADX associated with stress; and (5) treated or not with reserpine. The reactivity of aorta without endothelium was unaffected by the procedures. The reactivity of aorta with endothelium was decreased by either stress or ADX. This effect was reversed by both L-NAME and corticosterone. ADX did not potentiate the decrease in the aorta reactivity induced by stress. Reserpine did not change the reactivity of aorta with endothelium from normal rats, but prevented the decrease in reactivity induced by stress. It is concluded that the HPA axis participates in endothelium-dependent modulation of aorta reactivity in normal conditions and that thr SA system participates in hyperactivity of the endothelial NO-system induced by stress, which is responsible for the decreased aorta reactivity to NA. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effects of maternal exposure to lead (Pb) during the perinatal ( 1% and 0.1% Pb) periods of sexual brain differentiation were studied in adult male offspring. Maternal Pb levels were measured after treatment. Behavioral (open field and sexual behavior), physical (sexual maturation, body and organ weights), and biochemical (testosterone levels and hypothalamic monoamine and respective metabolite levels) data were assessed in perinatally exposed offspring. The effects of gonadrotopin-releasing hormone (GnRH) administration to pups at birth on puberty and sexual behavior were also investigated in offspring postnatally exposed to the metal. Results showed that perinatal administration of the two Pb concentrations did not modify maternal weight gain; 1% Pb exposure reduced offspring body weight during the 7 days of treatment while no changes were observed after 0.1% Pb exposure; neither ph concentration altered offspring sexual maturation; the higher Pb concentration improved sexual behavior while the 0.1% concentration reduced it; exposure to 0.1% Pb caused decrease in testis weight, an increase in seminal vesicle weight and no changes in plasma testosterone levels; hypothalamic VMA levels were increased compared to the control group; GnRH administration reversed the effects of 0.1% Ph administration on male sexual behavior. These results show that perinatal exposure to ph had a dose-dependent effect on the sexual behavior of rats and that a decrease in GnRH source in the offspring was probably involved in the reduction of their sexual performance. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
The present study examined the effects of letrozole exposure during brain sexual differentiation on endocrine, behavioural and neurochemical parameters in male rat descendants. Pregnant female rats received 1 mg kg(-1) day(-1) letrozole or vehicle by oral gavage on gestational Days 21 and 22. Exposure to letrozole reduced anogenital distance in males on postnatal Day (PND) 22. At adulthood (PND 75), plasma testosterone levels and hypothalamic dopaminergic activity were increased, but sexual competence was impaired, because fewer successful sexual behaviours (mount, intromission and principally ejaculation) were observed. The impairment of reproductive function by prenatal exposure to an aromatase inhibitor reinforces the importance of adequate oestrogenic activity during perinatal sexual differentiation for complete masculinisation of the hypothalamus.
Resumo:
The aim of the present study was to analyse the haemodynamic effects induced by the hypothalamic disconnection (HD) caudal or rostral to the paraventricular nucleus of the hypothalamus (PVN). Mean arterial pressure (MAP), hindlimb, renal and mesenteric blood flow and vascular conductance (HVC, RVC and MVC, respectively) were measured in urethane (1.2 g/kg, i.v.) anesthetized rats for 60 min after disconnection. HD caudal to the PVN was performed with a double-edged microknife of bayonet shape (R=1 mm, H=2 mm) stereotaxically placed, lowered 2.8 mm caudal to the bregma along the midline. The cut was achieved by rotating the microknife 90° right and 90° left. HD rostral to the PVN was performed with the knife placed 0.8 mm caudal to the bregma. Thirty minutes after the hypothalamic disconnection caudal (HD-C), a decrease in MAP was observed (-14±3 mm Hg), reaching a 60-min decrease of 30±3 mm Hg. Hindlimb conductance increased 10 min after HD (156±14%) and remained elevated throughout the experimental period. On the contrary, we observed a transitory renal vasoconstriction (82±9%, ≤20 min) and a late mesenteric vasodilation, starting at 30 min (108±4%) and reaching 138±6% at 60 min. In rats with HD rostral to the PVN, we only observed minor changes in the cardiovascular parameters. In the MAP, there was a slight decrease 60 min after the hypothalamic disconnection rostral (HD-R) (-9±4 mm Hg). There were no significant changes in HVC. RVC and MVC were increased 60 min after the HD-R (116±12% and 124±11%, respectively). These results suggest that vasodilation in the hindlimb and in the mesenteric bed could contribute to the observed decrease in MAP in HD caudal to PVN rats. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To determine whether central α1 and α2-adrenergic mechanisms are involved in urinary sodium and potassium excretion and urine volume induced by angiotensin II (ANGII), these renal parameters were measured in volume-expanded Holtzman rats with cannulas implanted into lateral ventricle (LV) and lateral hypothalamus (LH). The injection of ANGII into LV in rats with volume expansion reduced the sodium, potassium and urine excretion in comparison to the control injections of isotonic saline, whereas prazosin (α1 antagonist) potentiated these effects. Clonidine (α2 agonist) and yohimbine (α2 antagonist) injected into LH previous to injection of ANGII into LV also abolished the inhibitory effect of ANGII. These results suggest that the discharge of central alpha-adrenergic receptors has dual inhibitory and excitatory effect on antinatriuretic, antikaliuretic and antidiuretic effect induced by central ANGII in volume-expanded rats. © 1995.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sodium chloride intake was studied in rats submitted to different neurosurgical procedures. Intake decreased in animals submitted to bilateral destruction of the basolateral amygdaloid complex, and increased after the same animals were submitted to destruction of the anterior lateral hypothalamus, a procedure which is known to cause increased intake in intact rats. In the reverse experiment, where the anterior lateral hypothalamus was destroyed before the basolateral amygdaloid complex, the effect of increased sodium chloride intake induced by destruction of the hypothalamus overcame the decreased expected upon destruction of the amygdaloid complex. These results permit us to conclude that the hypothalamic areas which inhibit sodium chloride intake predominate over the stimulating areas of the amygdaloid complex in the control of sodium chloride intake. © 1981 ANKHO International Inc.