5 resultados para R12
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The aim of this study was to determine the relative potency of racemic ketamine and S(+)-ketamine for the hypnotic effect and to evaluate the clinical anesthesia produced by equianesthetic doses of these two substances in dogs. One hundred and eight dogs were allocated in groups R2, R2.5, R3, R6, R9, R12, S2, S2.5, S3, S6, S9, and S12, to receive by intravenous route 2, 2.5, 3, 6, 9, and 12 mg/kg of ketamine or S(+)-ketamine, respectively. A dose-effect curve was drawn with the dose logarithm and the percentage of dogs that presented hypnosis in each group. The curve was used to obtain a linear regression, to determine the effective doses 100 and the potency relationship. In another experimental phase, eight groups of five dogs received 3, 6, 9 and 12 mg/kg of ketamine or S(+)-ketamine to evaluate the periods of latency, hypnosis, and total recovery. The times in which the dogs reached the sternal position, attempted to stand up for the first time, recovered the standing position, and started to walk were also recorded. The hypnotic dose for ketamine was 9.82 +/- 3.02 (6.86-16.5) mg/kg and for S(+)-ketamine was 7.76 +/- 2.17 (5.86-11.5) mg/kg. The time of hypnosis was longer in R3 and the first attempt to stand up occurred early in R6 when compared with S3 and S6 respectively. When R9 (100% of hypnosis with ketamine) and S6 [100% of hypnosis with S(+)-ketamine] were compared (1:1.5 ratio), the time to sternal position (12 +/- 2.5 and 20.2 +/- 5.6 min respectively) and the total recovery time (45 +/- 5.5 and 60.2 +/- 5.2 min respectively) were significantly shorter with S(+)-ketamine. It was concluded that the potency ratio between ketamine and S(+)-ketamine in dogs is smaller than the one reported in other species, and that the dose obtained after a reduction of 50%, as usually performed in humans, would not be enough to obtain equianesthetic effects in dogs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nowadays the real contribution of light on the acceleration of the chemical reaction for the dental bleaching is under incredulity, mostly because the real mechanisms of its contribution still are obscure. Objectives: Determine the influence of pigment of three colored bleaching gels in the light distribution and absorption in the teeth, to accomplish that, we have used in this experiment bovine teeth and three colored bleaching gels. It is well Known that the dark molecules absorb light and increase the local temperature upraising the bleaching rate, these molecules are located in the interface between the enamel and dentin. Methods: This study was realized using an argon laser with 455nm with 150mW of intensity and a LED with the same characteristics, three colored gels (green, blue and red) and to realize the capture of the digital images it was used a CCD camera connected to a PC. The images were processed in a mathematical environment (MATHLAB, R12 (R)). Results: The obtained results show that the color of the bleaching gel influences significantly the absorption of light in the specific sites of the teeth. Conclusions: This poor absorption can be one of the major factors involved with the incredulity of the light contribution on the process that can be observed in the literature nowadays.
Resumo:
The usefulness of a scale-independent approach to identify Efimov states in three-body systems is shown by comparing such an approach with a realistic calculation in the case of three helium atoms. We show that the scaling limit is realized in practice in this case, and suggest its application to study other similar systems, including the case where two kinds of atoms are mixed. We also consider the observed large scattering length of the Rb-87 dimer to estimate the critical value of the ground-state energy of the corresponding trimer (greater than or equal to 1.5 mK), in order to allow for one Efimov state above the ground state.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)