3 resultados para Qxpak
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F1 rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite-tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume PCV and faecal egg count FEC) were collected on a weekly basis from 1064 lambs during a single 3-month post-weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm) were scored and corrected by Genoprob prior to qxpak analysis that included BoxCox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without BoxCox transformation methods. The most significant P-values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker-assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigates the genetic association of the SNP present in the ACTA1 gene with performance traits, organs and carcass of broilers to help marker-assisted selection of a paternal broiler line (TT) from EMBRAPA Swine and Poultry, Brazil. Genetic and phenotypic data of 1,400 broilers for 68 traits related to body performance, organ weights, weight of carcass parts, and yields as a percentage of organs and carcass parts were used. The maximum likelihood method, considering 4 analytical models, was used to analyze the genetic association between the SNP and these important economic traits. The association analysis was performed using a mixed animal model including the random effect of the animal (polygenic), and the fixed effects of sex (2 levels), hatch (5 levels) and SNP (3 levels), besides the random error. The traits significantly associated (P < 0.05) with the SNP were analyzed, along with body weight at 42 days of age (BW42), by the restricted maximum likelihood method using the multi-trait animal model to estimate genetic parameters. The analysis included the residual and additive genetic random effects and the sex-hatch fixed effect. The additive effects of the SNP were associated with breast meat (BMY), liver yield (LIVY), body weight at 35 days of age (BW35); drumstick skin (DSW), drumstick (DW) and breast (BW) weights. The heritability estimates for these traits, in addition to BW42, ranged from 0.24 ± 0.06 to 0.45 ± 0.08 for LIVY and BW35, respectively. The genetic correlation ranged from 0.02 ± 0.18 for LIVY and BMY to 0.97 ± 0.01 for BW35 and BW42. Based on the results of this study, it can be concluded that ACTA1 gene is associated with performance traits BW35, LIV and BMY, DW, BW and DW adjusted for body weight at 42 days of age. Therefore, the ACTA1 gene is an important molecular marker that could be used together with others already described to increase the economically important traits in broilers.