4 resultados para Quotients

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Previous studies with long-term average spectrum (LTAS) showed the importance of the glottal source for understanding the projected voices of actresses. In this study, electroglottographic (EGG) analysis was used to investigate the contribution of the glottal source to the projected voice, comparing actresses and nonactresses' voices, in different levels of intensity. Method: Thirty actresses and 30 nonactresses sustained vowels in habitual, moderate, and loud intensity levels. The EGG variables were contact quotient (CQ), closing quotient (QCQ), and opening quotient (QOQ). Other variables were sound pressure level (SPL) and fundamental frequency (F0). A KayPENTAX EGG was used. Variables were inputted in a general linear model. Results/Discussion: Actresses showed significantly higher values for SPL, in all levels, and both groups increased SPL significantly while changing from habitual to moderate and further to loud. There were no significant differences between groups for EGG quotients. There were significant differences between the levels only for F0 and CQ for both groups. Conclusion: SPL was significantly higher among actresses in all intensity levels, but in the EGG analysis, no differences were found. This apparently weak contribution of the glottal source in the supposedly projected voices of actresses, contrary to previous LTAS studies, might be because of a higher subglottal pressure or perhaps greater vocal tract contribution in SPL. Results from the present study suggest that trained subjects did not produce a significant higher SPL than untrained individuals by increasing the cost in terms of higher vocal fold collision and hence more impact stress. Future researches should explore the difference between trained and nontrained voices by aerodynamic measurements to evaluate the relationship between physiologic findings and the acoustic and EGG data. Moreover, further studies should consider both types of vocal tasks, sustained vowel and running speech, for both EGG and LTAS analysis. © 2013 The Voice Foundation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complexity of biological samples poses a major challenge for reliable compound identification in mass spectrometry (MS). The presence of interfering compounds that cause additional peaks in the spectrum can make interpretation and assignment difficult. To overcome this issue, new approaches are needed to reduce complexity and simplify spectral interpretation. Recently, focused on unknown metabolite identification, we presented a new approach, RANSY (ratio analysis of nuclear magnetic resonance spectroscopy; Anal. Chem. 2011, 83, 7616-7623), which extracts the signals related to the same metabolite based on peak intensity ratios. On the basis of this concept, we present the ratio analysis of mass spectrometry (RAMSY) method, which facilitates improved compound identification in complex MS spectra. RAMSY works on the principle that, under a given set of experimental conditions, the abundance/intensity ratios between the mass fragments from the same metabolite are relatively constant. Therefore, the quotients of average peak ratios and their standard deviations, generated using a small set of MS spectra from the same ion chromatogram, efficiently allow the statistical recovery of the metabolite peaks and facilitate reliable identification. RAMSY was applied to both gas chromatography/MS and liquid chromatography tandem MS (LC-MS/MS) data to demonstrate its utility. The performance of RAMSY is typically better than the results from correlation methods. RAMSY promises to improve unknown metabolite identification for MS users in metabolomics or other fields.