145 resultados para Pure spinor
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
It has recently been shown that the ten-dimensional superstring can be quantized using the BRST operator Q = philambda(alpha)d(alpha), where lambda(alpha) is a pure spinor satisfying; lambdagamma(m)lambda = 0 and dalpha is the fermionic supersymmetric derivative. In this paper, the pure spinor version of superstring theory is formulated in a curved supergravity background and it is shown that nilpotency and holomorphicity of the pure spinor BRST operator imply the on-shell superspace constraints of the supergravity background. This is shown to lowest order in alpha' for the heterotic and Type II superstrings, thus providing a compact pure spinor version of the ten-dimensional superspace constraints for N = 1 Type IIA and Type IIB supergravities. Since quantization is straightforward using the pure spinor version of the superstring, it is expected that these methods can also be used to compute higher-order alpha' corrections to the ten-dimensional superspace constraints. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In a previous Letter. The BRST cohomology in the pure spinor formalism of the superstring was shown to coincide with the light-cone Green-Schwarz spectrum by using an SO(8) parameterization of the pure spinor. In this Letter, the SO(9, 1) Lorentz generators are explicitly constructed using this SO(8) parameterization, proving the Lorentz invariance of the pure spinor BRST cohomology. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
It is proven that the classical pure spinor superstring in an AdS(5) X S-5 background has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et at. for the classical Green-Schwarz superstring.
Resumo:
Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted (c) over cap = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action.
Resumo:
Using the pure spinor formalism we prove identities which relate the tree-level, one-loop and two-loop kinematic factors for massless four-point amplitudes. From these identities it follows that the complete supersymmetric one- and two-loop amplitudes are immediately known once the tree-level kinematic factor is evaluated. In particular, the two-loop equivalence with the RNS formalism (up to an overall coefficient) is obtained as a corollary.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
After adding a pair of non-minimal fields and performing a similarity transformation, the BRST operator in the pure spinor formalism is expressed as a conventional-looking BRST operator involving the Virasoro constraint and (b, c) ghosts, together with 12 fermionic constraints. This BRST operator can be obtained by gauge-fixing the Green-Schwarz superstring where the 8 first-class and 8 second-class Green-Schwarz constraints are combined into 12 first-class constraints. Alternatively, the pure spinor BRST operator can be obtained from the RNS formalism by twisting the ten spin-half RNS fermions into five spin-one and five spin-zero fermions, and using the SO(10)/U(5) pure spinor variables to parameterize the different ways of twisting. GSO(-) vertex operators in the pure spinor formalism are constructed using spin fields and picture-changing operators in a manner analogous to Ramond vertex operators in the RNS formalism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.