23 resultados para Protoplanetary disc
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This study evaluated the affect of disc displacement and articular disc repositioning on stability after surgical counterclockwise rotation and advancement of the maxillomandibular complex.Patients and Methods: A total of 72 patients (59 females, 13 males), with an average age of 30 years (range, 15 to 60 years) were evaluated. The patients were divided into 3 groups. Group 1 (G1; n = 21), with healthy temporomandibular joints (TMJs), underwent double jaw surgery only. Group 2 (G2; n = 35), with articular disc dislocation, underwent articular disc repositioning using the Mitek anchor (Mitek Surgical Products, Westwood, MA) technique concomitantly with orthognathic surgery. Group 3 (G3; n = 16), with articular disc dislocation, underwent orthognathic surgery only. Average postsurgical follow-up was 31 months. Each patient's lateral cephalograms were traced, digitized twice, and averaged to estimate surgical changes and postsurgical stability.Results: After surgery, the occlusal plane angle was decreased significantly in all 3 groups: by -6.3 +/- -15.0 degrees in G1, by -9.6 +/- 4.8 degrees in G2, and by -7.1 +/- 4.8 degrees in G3. The maxillomandibular complex was advanced and rotated counterclockwise similarly in all 3 groups, with advancement at the menton of 12.4 +/- 5.5 mm in G1, 13.5 +/- 4.3 mm in G2, and 13.6 +/- 5.0 mm in G3; advancement at the B point of 9.5 +/- 4.9 mm in G1, 10.2 +/- 3.7 mm in G2, and 10.8 +/- 3.7 mm in G3; and advancement at the lower incisor edge of 7.1 +/- 4.6 mm in G1, 6.6 +/- 3.2 mm in G2, and 7.9 +/- 3.0 mm in G3. Postsurgery, the occlusal plane angle increased in G3 (2.6 +/- 3.8 degrees; 37% relapse rate) but remained stable in G1 and G2. Postsurgical mandibular changes in the horizontal direction demonstrated a significant relapse in G3 at the menton (-3.8 +/- 4.1 mm; 28%), the B point (-3.0 +/- 3.4 mm; 28%), and the lower incisor edge (-2.3 +/- 2.1 mm; 34%) but remained stable in G1 and G2.Conclusions: Maxillomandibular advancement with counterclockwise rotation of the occlusal plane is a stable procedure for patients with healthy TMJs and for patients undergoing simultaneous TMJ disc repositioning using the Mitek anchor technique. Those patients with preoperative TMJ articular disc displacement who underwent double-jaw surgery and no TMJ intervention experienced significant relapse. (C) 2008 American Association of Oral and Maxillofacial Surgeons.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The photospheres of stars hosting planets have larger metallicity than stars lacking planets. This could be the result of a metallic star contamination produced by the bombarding of hydrogen-deficient solid bodies. In the present work we study the possibility of an earlier metal enrichment of the photospheres by means of impacting planetesimals during the first 20-30 Myr. Here we explore this contamination process by simulating the interactions of an inward migrating planet with a disc of planetesimal interior to its orbit. The results show the percentage of planetesimals that fall on the star. We identified the dependence of the planet's eccentricity (e(p)) and time-scale of migration (tau) on the rate of infalling planetesimals. For very fast migrations (tau= 10(2) and 10(3) yr) there is no capture in mean motion resonances, independently of the value of e(p). Then, due to the planet's migration the planetesimals suffer close approaches with the planet and more than 80 per cent of them are ejected from the system. For slow migrations (tau= 10(5)and 10(6) yr) the percentage of collisions with the planet decreases with the increase of the planet's eccentricity. For e(p) = 0 and 0.1 most of the planetesimals were captured in the 2:1 resonance and more than 65 per cent of them collided with the star. Whereas migration of a Jupiter mass planet to very short pericentric distances requires unrealistic high disc masses, these requirements are much smaller for smaller migrating planets. Our simulations for a slowly migrating 0.1 M-Jupiter planet, even demanding a possible primitive disc three times more massive than a primitive solar nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These calculations open possibilities to explain hot Jupiter exoplanet metallicities.
Resumo:
The articular disc of the temporomandibular joint was studied in a foetuses and children group (GI), a dentate group of adults (GII) and an edentulous, elderly group of humans (GIII) by light microscopy. The main, constituent bundles of type I collagen fibres are stratified and are orientated sagittally, transversely and obliquely in the middle portion of the disc. In the thick, posterior portion, transverse bundles constitute the main feature. In the anterior portion of the disc, the fibres are sagittally and obliquely orientated. Type III. collagen fibres, intermingled with type I collagen fibres are present in all groups. The disc is cellular in nature in foetuses and children becoming more fibrous with age. Chondroid cells are observed in all portions of the discs in groups GII and GIII. Elastic fibres are numerous in GI discs and decrease in number in the disc with age. These fibres lie parallel to the collagen fibres in all three portions of the three groups.
Resumo:
The articular disc of the temporomandibular joint was studied in fetuses (16 to 39 weeks of intrauterine life), infants (up to 4 months of age), dentulous adults (aged 30 to 39 years), and completely edentulous adults (aged 60 to 69 years) by scanning electron microscopy. The constituent bundles of collagen fibers were stratified and were oriented anteroposteriorly, laterolaterally, and obliquely in the middle portion of the disc. A ring of laterolateral bundles constituted the main feature of the thick posterior portion. In the anterior portion of the disc, the fibers were anteroposteriorly and obliquely oriented. On the superior and inferior surfaces of the disc, a thin layer of perpendicularly arranged collagen fibers covered the underlying, thick, laterolateral oriented collagen fibers.
Resumo:
This paper discusses the investigation of an abrasive process for finishing flat workpieces, based on the combination of important grinding and lapping characteristics. Instead of loose abrasive grains between the workpiece and the lapping plate, a resinoid grinding wheel of hot-pressed silicon carbide is placed on the plate of a device resembling a lapping machine. The resin bond grinding wheel is dressed with a single-point diamond. In addition to keeping the plate flat, dressing also plays the role of interfering in the behavior of the process by varying the overlap factor (Ud). It was found that the studied process simplify the set-up and can be controlled more easily than in lapping, whose is a painstaking process. The surface roughness and flatness deviation proved comparable to those of lapping, or even finer than it, with the additional advantage of a less contaminated workpiece surface with a shiny appearance. The process was also monitored by acoustic emission (AE), which indicates to be a promissing and suitable technique for use in this process. Copyright © 2008 by ASME.
Resumo:
The study on several components of intervertebral joints is essential to understand the spine's degenerative mechanisms and to assess the best method for their treatment. For such study it is necessary to know the mechanical properties of the isolated intervertebral disc (ID) mechanical properties and, it is necessary to evaluate its stresses and strains. In order to assess the ID displacements, a fine, U-shaped blade was developed, over which two extensometers connected in a Wheatstone bridge were placed. The device was then tested on porcine spine ID, where compression loads were applied and the extremities displacements of the blade coupled to the intervertebral disc were measured. Stress/strain diagram, both on the compression and on the decompression phases, evidencing the non-linear nature of such relationship. With the experiment, it was possible to obtain approximate values of the longitudinal elasticity module (E) of the disc material and of the Poisson coefficient (n ). After several tests, E results are compatible with those obtained by others studies, with very simple and low-cost device. This experiments can be used for obtained others mechanical properties of isolated ID with precision and accuracy.
Resumo:
Introduction: Intradural lumbar disc herniations are uncommon presentations of a relatively frequent pathology, representing less than 1% of all lumbar disc hernias. They show specific features concerning their clinical diagnosis, with a higher incidence of cauda equina syndrome, and their surgical treatment requires a transdural approach. Methods: In this article, we describe five cases of this pathology and review the literature as well as some considerations about the difficulties in the preoperative diagnostic issues and the surgical technique. Conclusion: We concluded that for intradural disc herniations the diagnosis is mainly intraoperative, and the surgical technique has some special aspects. © 2012 Springer-Verlag Berlin Heidelberg.