3 resultados para Propanolamines

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to demonstrate a physiological response to TA2005, a potent β2-adrenoceptor (β2-AR) selective agonist, in right atria isolated from stressed female rats under the influence of the estrous cycle. We obtained concentration-response curves to the agonist in the presence and in the absence of selective antagonists in right atria isolated from female rats submitted to three daily foot-shock sessions (30 min duration, 120 pulses of 1.0 mA, 1.0 s, applied at random intervals of 5- 25 s) and sacrificed at estrus or diestrus. Our results showed that the pD2 values of TA2005 were not influenced by estrous cycle phase or foot-shock stress. However, in right atria from stressed rats sacrificed during diestins, the concentration-response curve to TA2005 was biphasic, with a response being obtained at concentrations of 0.1 nM, whereas during estrus no response was observed at doses lower than 3 nM. ICI118,551, a β2-AR antagonist, abolished the response to nanomolar concentrations of TA2005 in right atria from stressed rats at diestrus, with no changes in agonist pD2 values in right atria from control rats (7.47 ± 0.09, p > 0.05) but a 3-fold decrease in pD2 values of TA2005 in right atria from foot shock stressed rats (7.90 ± 0.07, p ≤ 0.05). Concentration-response curves to TA2005 in the presence of ICI118,551 were best fitted by a one-site model equation. The β1-AR antagonist, CGP20712A, shifted to the right only the second part of the concentration-response curves to the agonist, unmasking the putative β2-AR-mediated response to the agonist in tissues isolated from stressed rats at diestrus. Under this condition, concentration-response curves to the agonist were best fitted by a two-site model equation, pD2 and maximum response of TA2005 interaction with β1- and putative β2-adrenoceptor components were calculated. Schild analyses gave a pK(B) value for CGP20712A that was typical for the interaction with β1-AR in each experimental group, pK(B) values for ICI118,551 could not be obtained in stressed rats sacrificed at diestins since Schild plot slopes were lower than 1.0. In right atria from control rats, ICI118,551 pK(B) values were similar to reported values for the interaction of the antagonist with β1-AR. These results confirm that a heterogenous β1-AR population mediating the chronotropic response to catecholamines can be demonstrated in right atria from foot shock stressed female rats sacrificed at diestins. The stress-induced response seems to be mediated by the β2-AR subtype. Right atria from rats sacrificed during estrus are protected against stress-induced alterations on the homogeneity of β-AR population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.