4 resultados para Program processors
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement.
Resumo:
A digital-desk pilot program, named One Laptop Per Child (OPLC), in Brazil uses a unique display design to provide an interactive interface developed to enhance education and minimize ergonomic concerns. The one-to-one computer strategy as proposed by Nicholas Negroponte is a way of circumventing the tragedy of the locked computer lab because it gives children full access to computers anytime. The OLPC program has focused on a solution that minimizes power consumption, which also limits the display's maximum size and processor performance because the LCD backlights are responsible for a significant part of the power consumption in laptops. The government has also developed a new type of low-cost tablet that is based on a resistive principle. High transparencies can be obtained in the 90% range in the tablet, while robustness is guaranteed by the outstanding tribological characteristics of Sn02 on glass.
Resumo:
SAFT techniques are based on the sequential activation, in emission and reception, of the array elements and the post-processing of all the received signals to compose the image. Thus, the image generation can be divided into two stages: (1) the excitation and acquisition stage, where the signals received by each element or group of elements are stored; and (2) the beamforming stage, where the signals are combined together to obtain the image pixels. The use of Graphics Processing Units (GPUs), which are programmable devices with a high level of parallelism, can accelerate the computations of the beamforming process, that usually includes different functions such as dynamic focusing, band-pass filtering, spatial filtering or envelope detection. This work shows that using GPU technology can accelerate, in more than one order of magnitude with respect to CPU implementations, the beamforming and post-processing algorithms in SAFT imaging. ©2009 IEEE.
Resumo:
In this article we explore the NVIDIA graphical processing units (GPU) computational power in cryptography using CUDA (Compute Unified Device Architecture) technology. CUDA makes the general purpose computing easy using the parallel processing presents in GPUs. To do this, the NVIDIA GPUs architectures and CUDA are presented, besides cryptography concepts. Furthermore, we do the comparison between the versions executed in CPU with the parallel version of the cryptography algorithms Advanced Encryption Standard (AES) and Message-digest Algorithm 5 (MD5) wrote in CUDA. © 2011 AISTI.