93 resultados para Process parameters
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Pressure drop and minimum fluidization velocity were experimentally studied in a vibro-fluidized bed of inert particles subjected to different vibration intensities during drying of guava pulp. Maltodextrin was added to the pulp in order to prevent stickiness between particles and the consequent bed collapse. Pulps were initially concentrated, resulting in pastes with different soluble solids content, and a constant fraction of maltodextrin was guaranteed in the final pulp samples. The pulp rheological behavior as affected by temperature and total soluble solids content, including maltodextrin, was evaluated and the effect of pulp apparent viscosity on pressure drop and minimum vibro-fluidization velocity were investigated. Two types of inert particles -3.6 mm glass beads and 3 mm Teflon cylinders were tested and, due to lower pressure drop presented by Teflon cylinders during operation of the dry vibro-fluidized bed, these particles were adopted for pulp drying process. Increasing pulp apparent viscosity caused a considerable increase in the vibro-fluidized bed pressure drop during pulp drying and, as a consequence resulted in a larger value of minimum vibro-fluidization velocity. on the other hand, the negative effect of increasing apparent viscosity could be attenuated by increasing the fluidized bed vibration intensity, which could prevent stickiness between particles. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Traditionally, an (X) over bar chart is used to control the process mean and an R chart is used to control the process variance. However, these charts are not sensitive to small changes in the process parameters. The adaptive ($) over bar and R charts might be considered if the aim is to detect small disturbances. Due to the statistical character of the joint (X) over bar and R charts with fixed or adaptive parameters, they are not reliable in identifing the nature of the disturbance, whether it is one that shifts the process mean, increases the process variance, or leads to a combination of both effects. In practice, the speed with which the control charts detect process changes may be more important than their ability in identifying the nature of the change. Under these circumstances, it seems to be advantageous to consider a single chart, based on only one statistic, to simultaneously monitor the process mean and variance. In this paper, we propose the adaptive non-central chi-square statistic chart. This new chart is more effective than the adaptive (X) over bar and R charts in detecting disturbances that shift the process mean, increase the process variance, or lead to a combination of both effects. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Traditionally, an (X) over bar -chart is used to control the process mean and an R-chart to control the process variance. However, these charts are not sensitive to small changes in process parameters. A good alternative to these charts is the exponentially weighted moving average (EWMA) control chart for controlling the process mean and variability, which is very effective in detecting small process disturbances. In this paper, we propose a single chart that is based on the non-central chi-square statistic, which is more effective than the joint (X) over bar and R charts in detecting assignable cause(s) that change the process mean and/or increase variability. It is also shown that the EWMA control chart based on a non-central chi-square statistic is more effective in detecting both increases and decreases in mean and/or variability.
Resumo:
The VSS X chart, dedicated to the detection of small to moderate mean shifts in the process, has been investigated by several researchers under the assumption of known process parameters. In practice, the process parameters are rarely known and are usually estimated from an in-control Phase I data set. In this paper, we evaluate the (run length) performances of the VSS chart when the process parameters are estimated, we compare them in the case where the process parameters are assumed known and we propose specific optimal control chart parameters taking the number of Phase I samples into account.
Resumo:
The VSS X- chart is known to perform better than the traditional X- control chart in detecting small to moderate mean shifts in the process. Many researchers have used this chart in order to detect a process mean shift under the assumption of known parameters. However, in practice, the process parameters are rarely known and are usually estimated from an in-control Phase I data set. In this paper, we evaluate the (run length) performances of the VSS X- control chart when the process parameters are estimated and we compare them in the case where the process parameters are assumed known. We draw the conclusion that these performances are quite different when the shift and the number of samples used during the phase I are small. ©2010 IEEE.
Resumo:
This paper presents a new method to estimate hole diameters and surface roughness in precision drilling processes, using coupons taken from a sandwich plate composed of a titanium alloy plate (Ti6Al4V) glued onto an aluminum alloy plate (AA 2024T3). The proposed method uses signals acquired during the cutting process by a multisensor system installed on the machine tool. These signals are mathematically treated and then used as input for an artificial neural network. After training, the neural network system is qualified to estimate the surface roughness and hole diameter based on the signals and cutting process parameters. To evaluate the system, the estimated data were compared with experimental measurements and the errors were calculated. The results proved the efficiency of the proposed method, which yielded very low or even negligible errors of the tolerances used in most industrial drilling processes. This pioneering method opens up a new field of research, showing a promising potential for development and application as an alternative monitoring method for drilling processes. © 2012 Springer-Verlag London Limited.
Resumo:
This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Uma das principais limitações relacionadas ao processo de retificação de cerâmica é a confiabilidade do material devido aos defeitos introduzidos no processamento. A compreensão dos mecanismos envolvidos na remoção de material durante a retificação e a interação com os parâmetros de processo e microestrutura é fundamental para minimizar estes defeitos. A proposta desta revisão é apresentar os modelos de remoção de material e a forma como afetam as propriedades mecânicas da peça final.
Resumo:
A mathematical model was developed in order to study the behavior of thermal stratification of liquid in a typical storage tank with porous medium. The model employs a transient stream function-vorticity formulation to predict the development of stream function and temperature fields in a charging process. Parameters analyzed include Biot, Darcy, Reynolds and Richardson numbers, position, and the thickness of the porous medium. The results show the influence of these physical parameters that should be considered for a good design of storage tanks with thermal stratification.
Resumo:
With the advancement of technology, there is the possibility of introduction of differentiated flours, such as cassava instant flour. This alternative has generated great interest from the cassava processing industries. This study aimed to assess the effect of extrusion temperature, moisture content and screw speed on the thermal and viscosity properties of extruded cassava flour. The results showed significant effects of process parameters on the viscosity properties, with effect of screw speed on cold viscosity, viscosity peak and breakdown. The viscosity peak was influenced by the three parameters of extrusion process. No significant effects of operational conditions were observed on the final viscosity and retrogradation. The thermal properties of extruded cassava flours showed no residual enthalpy of gelatinization.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polycrystalline tin oxide thin films were prepared from ethanol solution of SnCl2.H2O (concentrations: 0.05, 0.1, 0.2 and 0.4 mol/dm(3)) at different substrate temperatures ranging from 300 to 450 degreesC. The kinetic deposition processes were studied in terms of various process parameters. The crystal phases, crystalline structure, grain size and surface morphology are revealed in accordance to X-ray diffractometry and scanning electron microscopy (SEM). Texture coefficients (TCs) for (110), (2 0 0), (2 11) and (3 0 1) reflections of the tetragonal SnO2 were calculated. Structural characteristics of deposited films with respect to varying precursor chemistry and substrate temperature are presented and discussed. (C) 2003 Published by Elsevier B.V.
Resumo:
Blast furnace gas yield is essentially controlled by a gas-solid reaction phenomenon, which strongly influences hot metal manufacturing costs. As a result of rising prices for reducing agents on the international market, Companhia Siderurgica Nacional decided to inject natural gas into its blast furnaces. With more gas inside the furnace, the burden permeability became even more critical. To improve blast furnace gas yield, a new technological approach was adopted; raising the metallic burden reaction surface. To that end, a special sinter was developed with permeability being controlled by adding micropore nucleus forming agents, cellulignin coal, without, however, degrading its mechanical properties. This paper shows the main process parameters and the results from physicochemical characterisation of a sinter with controlled permeability, on a pilot scale, compared to those of conventional sinter. Gas flow laboratory simulations have conclusively corroborated the positive effects of micropore nucleus forming agents on enhancing sinter permeability.