36 resultados para Pressure Drop
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pressure drop and minimum fluidization velocity were experimentally studied in a vibro-fluidized bed of inert particles subjected to different vibration intensities during drying of soursop pulp. Maltodextrin was added to the pulp in order to prevent stickiness between particles and the consequent bed collapse. Pulps were initially concentrated, resulting in pastes with different soluble solids content, and a constant fraction of maltodextrin was guaranteed in the final pulp samples. The pulp theological behavior as affected by temperature and total soluble solids content, including maltodextrin, was evaluated and the effect of pulp apparent viscosity on pressure drop and minimum vibro-fluidization velocity were investigated. Two types of inert particles -3.6 mm glass beads and 3 mm Teflon cylinders (length and diameter) - were tested and, due to lower pressure drop presented by Teflon cylinders during operation of the dry vibro-fluidized bed, these particles were adopted for pulp drying process. Increasing pulp apparent viscosity caused a considerable increase in the vibro-fluidized bed pressure drop during pulp drying and, as a consequence resulted in a larger value of minimum vibro-fluidization velocity. on the other hand, the negative effect of increasing apparent viscosity could be attenuated by increasing the fluidized bed vibration intensity, which could prevent stickiness between particles. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A procedure for calculation of refrigerant mass flow rate is implemented in the distributed numerical model to simulate the flow in finned-tube coil dry-expansion evaporators, usually found in refrigeration and air-conditioning systems. Two-phase refrigerant flow inside the tubes is assumed to be one-dimensional, unsteady, and homogeneous. In themodel the effects of refrigerant pressure drop and the moisture condensation from the air flowing over the external surface of the tubes are considered. The results obtained are the distributions of refrigerant velocity, temperature and void fraction, tube-wall temperature, air temperature, and absolute humidity. The finite volume method is used to discretize the governing equations. Additionally, given the operation conditions and the geometric parameters, the model allows the calculation of the refrigerant mass flow rate. The value of mass flow rate is computed using the process of parameter estimation with the minimization method of Levenberg-Marquardt minimization. In order to validate the developed model, the obtained results using HFC-134a as a refrigerant are compared with available data from the literature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process.
Resumo:
Data on pressure drop were obtained in stainless steel, sanitary fittings and valves during laminar and turbulent flow of aqueous suspensions of sucrose and bentonite. The rheological properties of these suspensions were determined and the Bingham model provided the best fitting with the experimental data. Friction losses were measured in fully- and partially-open butterfly and plug valves, bends and union. Values of loss coefficients (k(f)) were calculated and correlated as functions of the classical Reynolds number and the Reynolds number proposed by Govier and Aziz (1972) for viscoplastic fluids. The two-k method and a new proposed model presented the best adjustments for the Govier and Aziz Reynolds number, and Hedstrom and classical Reynolds numbers, respectively.
Resumo:
Pressure drop and minimum fluidization velocity were experimentally studied in a vibro-fluidized bed of inert particles subjected to different vibration intensities during drying of guava pulp. Maltodextrin was added to the pulp in order to prevent stickiness between particles and the consequent bed collapse. Pulps were initially concentrated, resulting in pastes with different soluble solids content, and a constant fraction of maltodextrin was guaranteed in the final pulp samples. The pulp rheological behavior as affected by temperature and total soluble solids content, including maltodextrin, was evaluated and the effect of pulp apparent viscosity on pressure drop and minimum vibro-fluidization velocity were investigated. Two types of inert particles -3.6 mm glass beads and 3 mm Teflon cylinders were tested and, due to lower pressure drop presented by Teflon cylinders during operation of the dry vibro-fluidized bed, these particles were adopted for pulp drying process. Increasing pulp apparent viscosity caused a considerable increase in the vibro-fluidized bed pressure drop during pulp drying and, as a consequence resulted in a larger value of minimum vibro-fluidization velocity. on the other hand, the negative effect of increasing apparent viscosity could be attenuated by increasing the fluidized bed vibration intensity, which could prevent stickiness between particles. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is the evaluation of four different heat exchangers used for myocardium during cardioplegic system in cardiac surgeries. Four types of shell and tube heat exchangers made of different exchange elements were constructed, as follows: stainless steel tubes, aluminium tubes, polypropylene hollow fiber, and bellows type. The evaluation was performed by in vitro tests of parameters such as heat transfer, pressure drop, and hemolysis tendency. The result has shown that all four systems tested were able to achieve the heat performance, and to offer low resistance to flow, and safety, as well as have low tendency to hemolysis. However, we can emphasize that the bellows type heat exchanger has a significant difference with regard to the other three types.
Resumo:
The objective of this paper is to present a generalized analytical-numerical model of the internal flow in heat pipes. The model formulation is based on two-dimensional formulation of the energy and momentum equations in the vapour and liquid regions and also in the metallic tube. The numerical solution of the model is obtained by using the descretization scheme LOAD and the SIMPLE numerical code. The flow fields, as well as the pressure fields, for different geometries were obtained and discussed. Copyright © 1996 Elsevier Science Ltd.
Resumo:
Friction loss coefficients for laminar flow of xantan gum solutions (concentrations in the range of 0.1-0.5% by weight) through valves and fittings were experimentally determined. The rheological behavior, studied by means of a concentric cylinder rheometer, was pseudoplastic, being well described by the Ostwald-De Waele model with non-linear correlation coefficients (r) between 0.998 and 0.999. In the pressure drop measurements the following fittings were employed: completely open and half way open ball valve, completely open and half way open angle valve, tee used like coupling, tee used like a 90° elbow, short radius 90° elbow and coupling. The results showed that the friction loss coefficients increased with decreasing generalized Reynolds number. The friction loss coefficients could be well adjusted by a potential model, suggested by Kittredge & Rowley (1957) for Newtonian fluids, K f = A(Re g) -B, with correlation coefficients between 0.837 and 0.999.
Resumo:
Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.