66 resultados para Precise positioning

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionospheric scintillations can seriously jeopardize the reliability of the GNSS signals and consequently can cause significant error or outage on precise positioning applications. The threat is most acute at low latitudes where ionospheric irregularities are more likely to occur resulting in L-band signal scintillations. This paper describes the effort made to model the ionospheric scintillations over the Latin American region in the frame of the CIGALA project funded by the European GNSS Supervisory Authority within the 7th Framework Programme of the European Commission. Comparisons between the low-latitude model of scintillations and observations are here presented and discussed within the project perspectives. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GPS precise point positioning (PPP) can provide high precision 3-D coordinates. Combined pseudorange and carrier phase observables, precise ephemeris and satellite clock corrections, together with data from dual frequency receivers, are the key factors for providing such levels of precision (few centimeters). In general, results obtained from PPP are referenced to an arbitrary reference frame, realized from a previous free network adjustment, in which satellite state vectors, station coordinates and other biases are estimated together. In order to obtain consistent results, the coordinates have to be transformed to the relevant reference frame and the appropriate daily transformation parameters must be available. Furthermore, the coordinates have to be mapped to a chosen reference epoch. If a velocity field is not available, an appropriated model, such as NNR-NUVEL-IA, has to be used. The quality of the results provided by this approach was evaluated using data from the Brazilian Network for Continuous Monitoring of the Global Positioning System (RBMC), which was processed using GIPSY-OASIS 11 software. The results obtained were compared to SIRGAS 1995.4 and ITRF2000, and reached precision better than 2cm. A description of the fundamentals of the PPP approach and its application in the integration of regional GPS networks with ITRF is the main purpose of this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Global Positioning System (GPS) transmits signals in two frequencies. It allows the correction of the first order ionospheric effect by using the ionosphere free combination. However, the second and third order ionospheric effects, which combined may cause errors of the order of centimeters in the GPS measurements, still remain. In this paper the second and third order ionospheric effects, which were taken into account in the GPS data processing in the Brazilian region, were investigated. The corrected and not corrected GPS data from these effects were processed in the relative and precise point positioning (PPP) approaches, respectively, using Bernese V5.0 software and the PPP software (GPSPPP) from NRCAN (Natural Resources Canada). The second and third order corrections were applied in the GPS data using an in-house software that is capable of reading a RINEX file and applying the corrections to the GPS observables, creating a corrected RINEX file. For the relative processing case, a Brazilian network with long baselines was processed in a daily solution considering a period of approximately one year. For the PPP case, the processing was accomplished using data collected by the IGS FORT station considering the period from 2001 to 2006 and a seasonal analysis was carried out, showing a semi-annual and an annual variation in the vertical component. In addition, a geographical variation analysis in the PPP for the Brazilian region has confirmed that the equatorial regions are more affected by the second and third order ionospheric effects than other regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After removal of the Selective Availability in 2000, the ionosphere became the dominant error source for Global Navigation Satellite Systems (GNSS), especially for the high-accuracy (cm-mm) demanding applications like the Precise Point Positioning (PPP) and Real Time Kinematic (RTK) positioning.The common practice of eliminating the ionospheric error, e. g. by the ionosphere free (IF) observable, which is a linear combination of observables on two frequencies such as GPS L1 and L2, accounts for about 99% of the total ionospheric effect, known as the first order ionospheric effect (Ion1). The remaining 1% residual range errors (RREs) in the IF observable are due to the higher - second and third, order ionospheric effects, Ion2 and Ion3, respectively. Both terms are related with the electron content along the signal path; moreover Ion2 term is associated with the influence of the geomagnetic field on the ionospheric refractive index and Ion3 with the ray bending effect of the ionosphere, which can cause significant deviation in the ray trajectory (due to strong electron density gradients in the ionosphere) such that the error contribution of Ion3 can exceed that of Ion2 (Kim and Tinin, 2007).The higher order error terms do not cancel out in the (first order) ionospherically corrected observable and as such, when not accounted for, they can degrade the accuracy of GNSS positioning, depending on the level of the solar activity and geomagnetic and ionospheric conditions (Hoque and Jakowski, 2007). Simulation results from early 1990s show that Ion2 and Ion3 would contribute to the ionospheric error budget by less than 1% of the Ion1 term at GPS frequencies (Datta-Barua et al., 2008). Although the IF observable may provide sufficient accuracy for most GNSS applications, Ion2 and Ion3 need to be considered for higher accuracy demanding applications especially at times of higher solar activity.This paper investigates the higher order ionospheric effects (Ion2 and Ion3, however excluding the ray bending effects associated with Ion3) in the European region in the GNSS positioning considering the precise point positioning (PPP) method. For this purpose observations from four European stations were considered. These observations were taken in four time intervals corresponding to various geophysical conditions: the active and quiet periods of the solar cycle, 2001 and 2006, respectively, excluding the effects of disturbances in the geomagnetic field (i.e. geomagnetic storms), as well as the years of 2001 and 2003, this time including the impact of geomagnetic disturbances. The program RINEX_HO (Marques et al., 2011) was used to calculate the magnitudes of Ion2 and Ion3 on the range measurements as well as the total electron content (TEC) observed on each receiver-satellite link. The program also corrects the GPS observation files for Ion2 and Ion3; thereafter it is possible to perform PPP with both the original and corrected GPS observation files to analyze the impact of the higher order ionospheric error terms excluding the ray bending effect which may become significant especially at low elevation angles (Ioannides and Strangeways, 2002) on the estimated station coordinates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wavelet transform is used to reduce the high frequency multipath of pseudorange and carrier phase GPS double differences (DDs). This transform decomposes the DD signal, thus separating the high frequencies due to multipath effects. After the decomposition, the wavelet shrinkage is performed by thresholding to eliminate the high frequency component. Then the signal can be reconstructed without the high frequency component. We show how to choose the best threshold. Although the high frequency multipath is not the main multipath error component, its correction provides improvements of about 30% in pseudorange average residuals and 24% in carrier phases. The results also show that the ambiguity solutions become more reliable after correcting the high frequency multipath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several positioning techniques have been developed to explore the GPS capability to provide precise coordinates in real time. However, a significant problem to all techniques is the ionosphere effect and the troposphere refraction. Recent researches in Brazil, at São Paulo State University (UNESP), have been trying to tackle these problems. In relation to the ionosphere effects it has been developed a model named Mod_Ion. Concerning tropospheric refraction, a model of Numerical Weather Prediction(NWP) has been used to compute the zenithal tropospheric delay (ZTD). These two models have been integrated with two positioning methods: DGPS (Differential GPS) and network RTK (Real Time Kinematic). These two positioning techniques are being investigated at São Paulo State University (UNESP), Brazil. The in-house DGPS software was already finalized and has provided very good results. The network RTK software is still under development. Therefore, only preliminary results from this method using the VRS (Virtual Reference Station) concept are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and/or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past few years the interest is accomplishing a high accuracy positioning increasing. One of the methods that has been applied by the scientific community is the network based on positioning. By using multiple reference station data, it is possible to obtain centimetric positioning in a larger coverage area, in addition to gain in reliability, availability and integrity of the service. Besides, using this concept, it is possible to model the atmospheric effects (troposphere refraction and ionosphere effect). Another important question concerning this topic is related to the transmission of the network corrections to the users. There are some possibilities for this fact and an efficient one is the Virtual Reference Station (VRS) concept. In the VRS concept, a reference station is generated near to the rover receiver (user). This provides a short baseline and the user has the possibility of using a single frequency receiver to accomplish the relative positioning. In order to test this kind of positioning method, a software has been developed at São Paulo State University. In this paper, the methodology applied to generate the VRS data is described and the VRS quality is analyzed by using the Precise Point Positioning (PPP) method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of determining spectral parameters p (slope of the phase PSD) and T (phase PSD at 1 Hz) and hence tracking error variance in a GPS receiver PLL from just amplitude and phase scintillation indices and an estimated value of the Fresnel frequency has been previously presented. Here this method is validated using 50 Hz GPS phase and amplitude data from high latitude receivers in northern Norway and Svalbard. This has been done both using (1) a Fresnel frequency estimated using the amplitude PSD (in order to check the accuracy of the method) and (2) a constant assumed value of Fresnel frequency for the data set, convenient for the situation when contemporaneous phase PSDs are not available. Both of the spectral parameters (p, T) calculated using this method are in quite good agreement with those obtained by direct measurements of the phase spectrum as are tracking jitter variances determined for GPS receiver PLLs using these values. For the Svalbard data set, a significant difference in the scintillation level observed on the paths from different satellites received simultaneously was noted. Then, it is shown that the accuracy of relative GPS positioning can be improved by use of the tracking jitter variance in weighting the measurements from each satellite used in the positioning estimation. This has significant advantages for scintillation mitigation, particularly since the method can be accomplished utilizing only time domain measurements thus obviating the need for the phase PSDs in order to extract the spectral parameters required for tracking jitter determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionospheric scintillations are caused by time-varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between similar to 50 degrees N and similar to 80 degrees N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sigma(phi) represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise 'equal weights' model. For pseudorange processing, relative weights were computed, so that a 'scintillation-mitigated' solution could be performed and compared to the (non-mitigated) 'equal weights' solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O Sistema de Posicionamento Global (GPS) transmite seus sinais em duas freqüências, o que permite eliminar matematicamente os efeitos de primeira ordem da ionosfera através da combinação linear ionosphere free. Porém, restam os efeitos de segunda e terceira ordem, os quais podem provocar erros da ordem de centímetros nas medidas GPS. Esses efeitos, geralmente, são negligenciados no processamento dos dados GPS. Os efeitos ionosféricos de primeira, segunda e terceira ordem são diretamente proporcionais ao TEC presente na ionosfera, porém, no caso dos efeitos de segunda e terceira ordem, comparecem também o campo magnético da Terra e a máxima densidade de elétrons, respectivamente. Nesse artigo, os efeitos de segunda e terceira ordem da ionosfera são investigados, sendo que foram levados em consideração no processamento de dados GPS na região brasileira para fins de posicionamento. Serão apresentados os modelos matemáticos associados a esses efeitos, as transformações envolvendo o campo magnético da Terra e a utilização do TEC advindo dos Mapas Globais da Ionosfera ou calculados a partir das observações GPS de pseudodistância. O processamento dos dados GPS foi realizado considerando o método relativo estático e cinemático e o posicionamento por ponto preciso (PPP). Os efeitos de segunda e terceira ordem foram analisados considerando períodos de alta e baixa atividade ionosférica. Os resultados mostraram que a não consideração desses efeitos no posicionamento por ponto preciso e no posicionamento relativo para linhas de base longas pode introduzir variações da ordem de poucos milímetros nas coordenadas das estações, além de variações diurnas em altitude da ordem de centímetros.