15 resultados para Postural stability
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Volleyball is a sport in which the laterality dominant limb shows superior strength and coordination because of its preferential use. Asymmetrical tendencies during the landing after the jump when striking or blocking actions are predominant for most part of game (ARRUDA; EDUARDO, 2008). Adaptations include imbalance of forces in static and dynamic motions at the knee joint, which increases risk for injury. Also, asymmetries in balance control during jumping and landing associate with a general postural instability that can be observed during static balance tasks. The purpose of this study was to investigate relationship between unequal lower limb strength (muscle imbalance) and postural stability levels in volleyball athletes and non-athletes. Nine female volleyball athletes and 10 active non-athletes participated in this study. Four encouters with participants were scheduled: three encounters in the bodybuilding gymnasium to collect anthropometric measures (weight, height for BMI, thigh circumference, which provided an initial diagnosis about asymmetry), and to perform the isometric strength test (i.e., leg press using a load cell and a force transducer to calculate uni an bilateral strength). The last encounter was in the laboratory where a balance test on a force platform was administered under five test conditions, with three repetitions each: baseline (natural standing position), one-leg standing, right side, with full vision (D_CV), and blindfolded (D_SV), one-leg standing, left side, with full vision (E_CV), and blindfolded (E_SV). The stability levels were evaluated using the path length parameters which was based on the total displacement of the center of pressure (DTCP). . Both groups shows asymmetric strength levels between legs, with better performance for the right leg. An ANOVA three way using the DTCP for the CV condition, legs (D x E), trials (3) with repeated measures for the first two factors and with a between (three)...
Resumo:
The purpose of the current study was to investigate the role of visual information on gait control in people with Parkinson's disease as they crossed over obstacles. Twelve healthy individuals, and 12 patients with mild to moderate Parkinson's disease, walked at their preferred speeds along a walkway and stepped over obstacles of varying heights (ankle height or half-knee height), under three visual sampling conditions: dynamic (normal lighting), static (static visual samples, similar to stroboscopic lighting), and voluntary visual sampling. Subjects wore liquid crystal glasses for visual manipulation. In the static visual sampling condition only, the patients with Parkinson's disease made contact with the obstacle more often than did the control subjects. In the successful trials, the patients increased their crossing step width in the static visual sampling condition as compared to the dynamic and voluntary visual sampling conditions; the control group maintained the same step width for all visual sampling conditions. The patients showed lower horizontal mean velocity values during obstacle crossing than did the controls. The patients with Parkinson's disease were more dependent on optic flow information for successful task and postural stability than were the control subjects. Bradykinesia influenced obstacle crossing in the patients with Parkinson's disease. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Although postural changes were already reported in blind adults, no previous study has investigated postural stability in blind children. Moreover, there are few studies which used a stabilometric instrument to measure postural balance. In this study we evaluated stabilometric paramaters in blind children. Methods: We evaluated children between 7 to 12 years old, they were divided into two groups: Blind (n = 11) and age-matched control (n = 11) groups by using computerized stabilometry. The stabilometric examination was performed taking the gravity centers displacement of the individual projected into the platform. Thirthy seconds after the period in which this information was collected, the program defined a medium-pressure center, which was used to define x and y axes displacement and the distance between the pressure center and the platform center. Furthermore, the average sway rate and the body sway area were obtained by dividing the pressure center displacement and the time spent on the task; and by an ellipse function (95% percentille), respectively. Percentages of anterior, posterior, left and right feet weight also were calculated. Variables were compared by using the Student’s t test for unpaired data. Significance level was considered for p <0.05. Results: Displacement of the x axis (25.55 ± 9.851 vs. -3.545 ± 7.667; p <0.05) and average sway rate (19.18 ± 2.7 vs. -10.55 ± 1.003; p <0.001) were increased in the blind children group. Percentage of left foot weight was reduced (45.82 ± 2.017 vs. 52.36 ± 1.33; p <0.05) while percentage of right foot weight was increased (54.18 ± 2.17 vs. 47.64 ± 1.33; p <0.05) in blind children. Other variables did not show differences. Conclusions: Blind children present impaired stabilometric parameters.
Resumo:
Pós-graduação em Psicologia do Desenvolvimento e Aprendizagem - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Evaluating the ability to rectify and maintain lumbar adjustment can contribute toward the understanding of the behavior of abdominal muscles and their participation in the stability of pelvic muscles in dancers during the posterior pelvic tilt and double straight leg lowering tests. Nine healthy volunteers (male and female ballet dancers; age mean: 25.9 ±7.37 years) underwent maximal isometric voluntary contraction (MIVC), isometric voluntary contraction at 50% of MIVC, posterior pelvic tilt (PPT) and double straight leg lowering (DSLL) tests. The tests were carried out in a single day, with 3 repetitions each. During the tests, electromygraphic signals of the rectus abdominis, obliquus internus and obliquus externus were recorded. The signal acquisition system was made up of bipolar surface electrodes, electrogoniometer and an electromechanic device (pressure sensor), which were connected to a signal conditioner module. Root mean square values of each muscle during the DSLL and PPT were converted into percentage of activation of 50% MIVC. Lower back pressure was submitted to the same process. ANOVA with repeated measures was performed, with the level of significance set at p < 0.05. The results revealed that all dancers were able to maintain posterior pelvic tilt and there was trend toward greater activation of the bilateral obliquus internus muscle. In an attempt to keep the pelvic region stabilized during DSLL, there was a greater contribution from the obliquus externus muscle in relation to other abdominal muscles.
Resumo:
Introduction: Data describing the relationships between postural alignment and stance stability are scarce and controversial. Objective: The aim of this study was to evaluate the effects of sensory disturbances on knee alignment in upright stance and the effects of knee hyperextension on stance stability. Method: Kinetic and kinematic data of 23 healthy adult women were collected while quietly standing in four sensory conditions. Kinematic data: knee angle (dependent variables) variations were analyzed across sensory conditions. Kinetic data: as subjects with hyperextended knees showed a clear tendency to flex their knees as balance challenge increased, center of pressure (COP) parameters (dependent variables) were analyzed in each sensory condition among trial sub-groups: Aligned-Trials (knee angle < 180°), Hyperextended-Trials (>180°) and Adjusted-Trials (>180° initially, turned <180° under challenging conditions). Results: Differences were found in mean velocity of COP in two conditions showing that knee alignment can affect stance stability. Conclusion: Knee hyperextension is a transient condition changing under postural challenges. Knee hyperextension affected postural control as mean velocity was the highest in the hyperextended group in natural standing sensory condition and lowest with sensory disturbance. © 2009 Elsevier Ltd.
Resumo:
Single Limb Stance under visual and proprioceptive disturbances is largely used in clinical settings in order to improve balance in a wide range of functional disabilities. However, the proper role of vision and proprioception in SLS is not completely understood. The objectives of this study were to test the hypotheses that when ankle proprioception is perturbed, the role of vision in postural control increases according to the difficulty of the standing task. And to test the effect of vision during postural adaptation after withdrawal of the somesthetic perturbation during double and single limb stance. Eleven males were submitted to double (DLS) and single limb (SLS) stances under conditions of normal or reduced vision, both with normal and perturbed proprioception. Center of pressure parameters were analyzed across conditions. Vision had a main effect in SLS, whereas proprioception perturbation showed effects only during DLS. Baseline stability was promptly achieved independently of visual input after proprioception reintegration. In conclusion, the role of vision increases in SLS. After proprioception reintegration, vision does not affect postural recovery. Balance training programs must take that into account. © 2011 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)