177 resultados para Porcelain veneer

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies has been reported a significant incidence of chipping of the feldspathic porcelain veneer in zirconia-based restorations. The purpose of this study was to compare the three-point flexural strength (MPa), Weibull parameters, Vickers hardness (VHN) and Vickers indentation fracture toughness (MPa/mm(1/2)) in feldspatic porcelains for metal and for zirconia frameworks. Bar specimens were made with the porcelains e.MaxCeram (EM) and VitaVM9 (V9) for zirconia core, and Duceragold (DG) and VitaVMK95 (VK) for metal core (n = 15). Kruskal-Wallis and Dun test were used for statistical analysis. There was no significant difference (p=0.31) among the porcelains in the flexural strength (Median = 73.2; 74.6; 74.5; 74.4). Weibull calculation presented highest reliability for VK (10.8) followed by em (7.1), V9 (5.7) and DG (5.6). Vickers hardness test showed that em (536.3), V9 (579.9) and VK (522.1) had no difference and DG (489.6) had the lowest value (p<.001). The highest fracture toughness was to VK (1.77), DG (1.58) had an intermediate value while V9 (1.33) and em (1.18) had the lowest values (p<.001). Despite of the suitable flexural strength, reliability and high hardness, the porcelains used to zirconia-based fixed dental prostheses showed lower fracture toughness values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Reabilitação Oral - FOAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crowns made from an yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) core with a porcelain veneer have shown high clinical failure rates. Manifestations of clinical failure in veneering ceramic ranges from a single chip to an extended fracture. Core failures are uncommon but usually are catastrophic. This article examines the possible causes of failure in zirconia systems and presents a case report involving the diagnosis and repair of three different types of failure in six 3Y-TZP/porcelain crowns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of the geometry and design of prosthetic crown preparations on stress distribution in compression tests, using finite element analysis (FEA). Materials and Methods: Six combinations of 3D drawings of all-ceramic crowns (yttria-stabilized zirconia framework and porcelain veneer) were evaluated: F, flat preparation and simplified crown; FC, flat preparation and crown with contact point; FCM, flat preparation and modified crown; A, anatomical preparation and simplified anatomical crown framework; AC, anatomical preparation and crown with contact point; and ACM, anatomical preparation and modified crown. Bonded contact types at all interfaces with the mesh were assigned, and the material properties used were according to the literature. A 200 N vertical load was applied at the center of each model. The maximum principal stresses were quantitatively and qualitatively analyzed. Results: The highest values of tensile stress were observed at the interface between the ceramics in the region under the load application for the simplified models (F and A). Reductions in stress values were observed for the model with the anatomical preparation and modified infrastructure (ACM). The stress distribution in the flat models was similar to that of their respective anatomical models. Conclusions: The modified design of the zirconia coping reduces the stress concentration at the interface with the veneer ceramic, and the simplified preparation can exert a stress distribution similar to that of the anatomical preparation at and near the load point, when load is applied to the center of the crown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of several methods for solving aesthetics in a clinical case can be a complicating factor. The diagnosis and planning of the event held in conjunction with the dental technician expand the possibilities of success. The present case illustrates the aesthetic resolution through the association of implant- and tooth-supported prostheses using metal free ceramic systems. A 38-year old male patient presented with a complex smile. After diagnosis and treatment planning, two ceramic crowns were made, one on tooth 11 and one on the implant region 21, along with a laminated porcelain veneer on the region of 12. Aesthetic needs of the patient are predictable only with a sound diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Based on a maxillary premolar restored with laminate veneer and using the 3-D finite element analysis (FEA) and mCT data, the aim of this study was to evaluate the influence of different types of buccal cusp reduction on the stress distribution in the porcelain laminate veneer and in the resin luting cement layer. Methods: Two 3-D FEA models (M) of a maxillary premolar were built from mCT data. The buccal cusp reduction followed two configurations: Mt-buccal cusp completely covered by porcelain laminate veneer; and Mp-buccal cusp partially covered by porcelain laminate veneer. The loading (150 N in 458) was performed on the top of the buccal cusp. The finite element software (Ansys Workbench 10.0) was used to obtain the maximum shear stress (σmax) and maximum principal stress (σmax). Results: The Mp showed reduced the stress (σmax) in porcelain laminate veneer (from-2.3 to 24.5 MPa) in comparison with Mt (from-5.3 to 27.4 MPa). The difference between the peak and lower stress values of σmax in Mp (-6.8 to 26.7 MPa) and Mt (-5.3 to 27.4 MPa) was similar for the resin luting cement layer. The structures not exceeded the ultimate tensile strength or the shear bond strength. Conclusions: Cusp reduction did not affect significant increase in σmax and τmax. The Mt showed better stress distribution (τmax) than Mp. © 2011 Published by Elsevier Ireland on behalf of Japan Prosthodontic Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study investigated the effect of extreme cooling methods on the flexural strength, reliability and shear bond strength of veneer porcelain for zirconia. Methods: Vita VM9 porcelain was sintered on zirconia bar specimens and cooled by one of the following methods: inside a switched-off furnace (slow), at room temperature (normal) or immediately by compressed air (fast). Three-point flexural strength tests (FS) were performed on specimens with porcelain under tension (PT, n = 30) and zirconia under tension (ZT, n = 30). Shear bond strength tests (SBS, n = 15) were performed on cylindrical blocks of porcelain, which were applied on zirconia plates. Data were submitted to one-way ANOVA and Tukey's post hoc tests (p < 0.05). Weibull analysis was performed on the PT and ZT configurations. Results: One-way ANOVA for the PT configuration was significant, and Tukey's test revealed that fast cooling leads to significantly higher values (p < 0.01) than the other cooling methods. One-way ANOVA for the ZT configuration was not significant (p = 0.06). Weibull analysis showed that normal cooling had slightly higher reliability for both the PT and ZT configurations. Statistical tests showed that slow cooling decreased the SBS value (p < 0.01) and showed less adhesive fracture modes than the other cooling methods. Clinical Significance: Slow cooling seems to affect the veneer resistance and adhesion to the zirconia core; however, the reliability of fast cooling was slightly lower than that of the other methods. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. When clinical fractures of the ceramic veneer on metal-ceramic prostheses can be repaired, the need for remake may be eliminated or postponed. Many different ceramic repair materials are available, and bond strength data are necessary for predicting the success of a given repair system.Purpose. This study evaluated the shear bond strength of different repair systems for metal-ceramic restorations applied on metal and porcelain.Material and methods. Fifty cylindrical specimens (9 X 3 mm) were fabricated in a nickel-chromium alloy (Vera Bond 11) and 50 in feldspathic porcelain (Noritakc). Metal (M) and porcelain (P) specimens were embedded in a polyvinyl chloride (PVC) ring and received I of the following bonding and resin composite repair systems (n=10): Clearfil SE Bond/Clearfil AP-X (CL), Bistite II DC/Palfique (BT), Cojet Sand/Z100 (Q), Scotchbond Multipurpose Plus/Z100 (SB) (control group), or Cojet Sand plus Scotchbond Multipurpose Plus/Z100 (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (1000 cycles at 5 degrees C to 55 degrees C), and stored at 37 degrees C for 8 days. Shear bond tests between the metal or ceramic specimens and repair systems were performed in a mechanical testing machine with a crosshead speed of 0.5 mm/min. Mean shear bond strength values (MPa) were submitted to 1-way ANOVA and Tukey honestly significant difference tests (alpha=.05). Each specimen was examined under a stereoscopic lens with X 30 magnification, and mode of failure was classified as adhesive, cohesive, or a combination.Results. on metal, the mean shear bond strength values for the groups were as follows: MCL, 18.40 +/- 2.88(b); MBT, 8.57 +/- 1.00(d); MCJ, 25.24 +/- 3.46(a); MSB, 16.26 +/- 3.09(bc); and MCJSB, 13.11 +/- 1.24(c). on porcelain, the mean shear bond strength values ofeach group were as follows: PCL, 16.91 +/- 2.22(b); PBT, 18.04 +/- 3.2(ab); PCJ, 19.54 +/- 3.77(ab); PSB, 21.05 +/- 3.22(a); and PCJSB, 16.18 +/- 1.71(b). Within each substrate, identical superscript letters denote no significant differences among groups.Conclusions. The bond strength for the metal substrate was significantly higher using the Q system. For porcelain, SB, Q, and BT systems showed the highest shear bond strength values, and only SB was significantly different compared to CL and CJSB (P <.05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the shear bond strength of repairs in porcelain conditioned with laser. Sixty porcelain discs were made and six groups were formed (n = 10): G1: conditioning with laser with potency 760 mW; G2: conditioning with laser with potency 760 mW and application of 37% phosphoric acid for 15 s; G3: conditioning with laser with potency 900 mW; G4: conditioning with laser with potency 900 mW and application of 37% phosphoric acid for 15 s; G5: application of 37% phosphoric acid for 15 s (group control) and G6: application of 10% hydrofluoric acid for 2 min. The composite resin was insert of incremental layers at the porcelain surface aided with a metal matrix, and photoactivation for 20 s each increment. The specimens were submitted to a thermal cycling by 1000 cycles of 30 s in each bath with temperature between 5 and 55 degrees C. After the thermal cycling, specimens were submitted to the shear bond strength. The results were evaluated statistically through analysis of variance and Tukey's tests with 5% significance. The averages and standard deviation founded were: G1, 11.25 (+/- 3.10); G2, 12.32 (+/- 2.65); G3, 14.02 (+/- 2.38); G4, 13.44 (+/- 2,07); G5, 9.91 (-/+ 2,18); G6, 12.74 (+/- 2.67). The results showed that the femtosecond laser produced a shear bond strength of repairs in porcelain equal to the hydrofluoric acid and significantly superior to the use of phosphoric acid. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To compare the flexural strength of two glass-infiltrated high-strength ceramics and two veneering glass-ceramics.Materials and Methods: Four ceramic materials were tested: two glass-infiltrated high-strength ceramics used as framework in metal-free restorations [In-Ceram Zirconia IZ (Gr1) and In-Ceram Alumina IA (Gr2)], and two glass-ceramics used as veneering material in metal-free restorations [Vita VM7 (Gr3) and Vitadur-alpha (Gr4)]. Bar specimens (25 x 5 x 2 mm(3)) made from core ceramics, alumina, and zirconia/alumina composites were prepared and applied to a silicone mold, which rested on a base from a gypsum die material. The IZ and IA specimens were partially sintered in an In-Ceram furnace according to the firing cycle of each material, and then were infiltrated with a low-viscosity glass to yield bar specimens of high density and strength. The Vita VM7 and Vitadur-alpha specimens were made from veneering materials, by vibration of slurry porcelain powder and condensation into a two-part brass Teflon matrix (25 x 5 x 2 mm(3)). Excess water was removed with absorbent paper. The veneering ceramic specimens were then removed from the matrix and were fired as recommended by the manufacturer. Another ceramic application and sintering were performed to compensate the contraction of the feldspar ceramic. The bar specimens were then tested in a three-point bending test.Results: The core materials (Gr1: 436.1 +/- 54.8; Gr2: 419.4 +/- 83.8) presented significantly higher flexural strength (MPa) than the veneer ceramics (Gr3: 63.5 +/- 9.9; Gr4: 57.8 +/- 12.7).Conclusion: In-Ceram Alumina and Zirconia were similar statistically and more resistant than VM7 and Vitadur-alpha.