154 resultados para Polymeric micelles

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This paper focuses on the characterization of polymeric micelle-forming tuberculostatic prodrugs and the antimycobacterial activity of these prodrugs.Method: By the condensation of hydroxymethylpyrazinamide, isoniazid and rifampin with free carboxyl groups on the copolymer poly(ethyleneglycol)-poly(aspartic acid), micelle-forming carrier-drug conjugates were obtained. These micelles were characterized by dynamic light scattering, to measure the micelle diameter; by acid-base titration, to determine the percentage of carboxylic groups occupied by the tuberculostatic; by Sudan III solubility tests, to estimate the critical micelle concentration (CMC); and visual control and spectrophotometric measurement, to determine the stability of micelles. These micelles were tested in vitro against several Mycobacterium strains.Results: As expected, the size and distribution of the micelle-forming tuberculostatic prodrugs found to be small (78.2nm, 84.2nm and 98.9 nm) while the level of the drug conjugated was high (65.02-85.7%). Furthermore, the micelles were stable in vitro, exhibiting a low level of CMC and stronger antimycobacterial activity than the original drugs.Conclusion: the results demonstrate that polymeric micelles can be used as efficient carriers for drugs, which alone, exhibit undesired pharmacokinetics, poor solubility, and low stability. The synthesized micelle-forming tuberculostatic prodrugs opens a perspective of alternative prodrugs that prolong action and decrease the toxicity of the tuberculostatic drugs of choice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terpolymers of N-isopropylacrylamide, dodecyl methacrylate (DOMA) and poly(ethylene glycol) (PEG) methacrylate, were synthesized by random copolymerization, and the composition was controlled to achieve systems having different thermosensitivities. H-1 NMR spectra and gel permeation chromatography (GPC) were employed to characterize the different samples obtained. The solution properties were studied by employing spectrophotometry, fluorescence, and dynamic light scattering techniques. The chemical compositions in the final terpolymers are close to those in the feed. The polymers exhibited cloud point temperatures (T-es) varying from 17 to 52 degrees C. Micropolarity studies using I-1/I-3 ratio of the vibronic bands of pyrene show the formation of amphiphilic aggregates capable of incorporating hydrophobic drugs as the polymer concentration is increased. The critical aggregation concentration (CAC) increases from 3.6 x 10(-3) to 1 x 10(-2) g/l with the PEG content varying from 5 to 35 mol%. Anisotropy measurements confirm the results obtained by pyrene fluorescence and show that the aggregates resulting from intermolecular interactions present different organizations. The hydrodynamic diameters (Dh) of the aggregates determined by dynamic light scattering (DLS) vary from 40 to 150 nm depending on the terpolymer composition. The T-cs and Dh values decreased with the ionic strength, and this behavior was attributed to the dehydration of the polymeric micelles. The capacity of solubilization of the aggregates was evaluated by employing pyrene, and the obtained results confirm the ability to incorporate hydrophobic molecules. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N'-ethylene bis(salicylideneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at platinum electrode in acetonitrile/tetrabutylammonium perchlorate by cyclic voltammetry. The voltammetric behavior of the sensor was investigated in 0.5 mol L-1 KCl solution in the absence and presence of molecular oxygen. Thus, with the addition of oxygen to the solution, the increase of cathodic peak current (at -0.25 V vs. saturated calomel electrode (SCE)) of the modified electrode was observed. This result shows that the nickel-salen film on electrode surface promotes the reduction of oxygen. The reaction can be brought about electrochemically, where the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the molecular oxygen in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the oxygen reduction. A plot of the cathodic current vs. the dissolved oxygen concentration for chronoamperometry (fixed potential = -0.25 V vs. SCE) at the sensor was linear in the 3.95-9.20 mg L-1 concentration range and the concentration limit was 0.17 mg L-1 O-2. The proposed electrode is useful for the quality control and routine analysis of dissolved oxygen in commercial samples and environmental water. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with a commercial O-2 sensor. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spray drying method was used to prepare luminescent microspheres. These microspheres were prepared by spraying an aqueous solution of dextrin and an europium(III) complex with subsequent drying in a hot medium. The spray dried powder was characterized by scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). Particle size distribution was estimated from SEM images. The ultrasonic spray drying technique was successfully applied to yield a microparticulated and red luminescent powder composed by the [Eu(dpa)(3)](3-) stop (dpa = dipicolinic acid) complex incorporated in dextrin microspheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The well-known polymeric precursor route is a simple and low-cost sol-gel method based on the preparation of an aqueous precursor solution of metals followed by the addition of a water-soluble polymer. This method consists of a polyesterification process between a metal chelate complex by using a hydroxycarboxylic acid and a polyhydroxy alcohol. In this work, citric acid (CA), tartaric acid (TA) and ethylenediaminetetraacetic acid (EDTA) are used as the hydroxycarboxylic acid and ethylene glycol (EG) is used as the polyhydroxy alcohol. The effects of the precursor pH solution, time and temperature of polymerization step as well as the combination of different chelating agents in order to obtain nanoscopic YBa2Cu3Oy samples were traced. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenolic resins when heat treated in inert atmosphere up to 1000 degreesC become glassy polymeric carbon (GPC), a chemically inert and biocompatible material useful for medical applications, such as in the manufacture of heart valves and prosthetic devices. In earlier work we have shown that ion bombardment can modify the surface of GPC, increasing its roughness. The enhanced roughness, which depends on the species, energy and fluence of the ion beam, can improve the biocompatibility of GPC prosthetic artifacts. In this work, ion bombardment was used to make a layer of implanted ions under the surface to avoid the propagation of microcracks in regions where cardiac valves should have pins for fixation of the leaflets. GPC samples prepared at 700 and 1500 degreesC were bombarded with ions of silicon. carbon, oxygen and gold at energies of 5, 6, 8 and 10 MeV, respectively, and fluences between 1.0 x 10(13) and 1.0 x 10(16) ions/cm(2). Nanoindentation hardness characterization was used to compare bombarded with non-bombarded samples prepared at temperatures up to 2500 degreesC. The results with samples not bombarded showed that the hardness of GPC increases strongly with the heat treatment temperature. Comparison with ion bombarded samples shows that the hardness changes according to the ion used, the energy and fluence. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SrBi4Ti4O15 (SBTi) thin films were obtained by the polymeric precursor method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional furnace at 700 degrees C for 2 h. Structural and morphological characterization of the SBTi thin films was investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates configuration, ferroelectric properties of the films were determined with remanent\polarization P-r and a coercive field E-c of 5.1 mu C/cm(2) and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 mu C/cm(2) and 85 kV/cm for the film thermally treated in conventional furnace, respectively. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10(10) switching cycles indicating that SBTi thin films can be a promise material for use in non-volatile memories. (C) 2007 Elsevier B.V. All rights reserved.