79 resultados para Polyester de Salen
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The electrochemical behavior of a carbon paste electrode modified (CPEM) with N,N′-ethylenebis(salicylideneiminato)oxovanadium(IV) complex ([(VO)-O-IV(Salen)]) was investigated as a new sensor for cysteine. Cyclic voltammetry at the modified electrode in 0.1 mol L-1 KCl Solution (pH 5.0) showed a single-electron reduction/oxidation of the Couple VO3+/VO2+. The CPEM with [VO(Salen)] presented good electrochemical stability in a wide pH range (4.0-10.0) and an ability to electrooxidate cysteine at 0.65 V versus SCE. These results demonstrate the viability of the use of this modified electrode as an amperometric sensor for cysteine determination. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Os achados clínicos e radiográficos após reparo intra-articular do ligamento cruzado cranial com prótese de poliéster, utilizando a técnica over-the-top modificada, foram avaliada em seis cães. Sete cirurgias foram realizadas devido ao acometimento bilateral em um dos animais. A avaliação clínica foi realizada ao 3º, 10º e 40º dias de pós-operatório, e a avaliação radiográfica realizada ao 5º e 24º meses após a cirurgia em cinco cães, por meio da qual se confirmou a progressão da doença articular degenerativa. A resolução dos sinais clínicos foi observada entre o 25º e 68º dias após a cirurgia, segundo avaliação realizada pelos proprietários. A função do membro operado foi considerada boa. Dois cães apresentaram desgaste e ruptura da prótese após a cirurgia. Concluiu-se que a prótese de poliéster, da forma como foi implantada neste estudo, não pode ser considerada como substituto satisfatório, uma vez que resultados superiores podem ser obtidos com ténicas menos invasivas e mais simples.
Resumo:
Four aliphatic thermoplastic poly(ester-urethane)s (PEUs) with similar molecular weights but varying polyesters molecular weight (534-1488 g/mol) were prepared from polyester diols, obtained by melt condensation of Azelaic acid and 1,9-Nonanediol, and 1,7-heptamethylene di-isocyanate (HPMDI) all sourced from vegetable oil feedstock. The thermal, and mechanical properties, and crystal structure of PEUs were investigated using DSC, TGA, DMA, tensile analysis and WAXD. For sufficiently long polyester chain, WAXD data indicated no hydrogen bonds polyethylene (PE)-like crystalline packing and for short polyester chains, small crystal domains with significant H-bonded polyamide (PA)-like packing. Crystallinity decreased with decreasing polyester molecular weights. The polymorphism of PEUs and consequently their melting characteristics were found to be largely controlled by polyester segment length. TGA of the PEUs indicated improved thermal stability with decreasing polyester chain length, suggesting a stabilization effect by urethane groups. Mechanical properties investigated by DMA and tensile analysis were found to scale predictably with the overall crystallinity of PEUs. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A general view of the electroanalytical applications of metal-salen complexes is discussed in this review. The family of Schiff bases derived from ethylenediamine and ortho-phenolic aldehydes (N,N'-ethylenebis(salicylideneiminato) - salen) and their complexes of various transition metals, such as Al, Ce, Co, Cu, Cr, Fe, Ga, Hg, Mn, Mo, Ni, and V have been used in many fields of chemical research for a wide range of applications such as catalysts for the oxygenation of organic molecules, epoxidation of alkenes, oxidation of hydrocarbons and many other catalyzed reactions; as electrocatalyst for novel sensors development; and mimicking the catalytic functions of enzymes. A brief history of the synthesis and reactivity of metal-salen complexes will be presented. The potentialities and possibilities of metal-Salen complexes modified electrodes in the development of electrochemical sensors as well as other types of sensors, their construction and methods of fabrication, and the potential application of these modified electrodes will be illustrated and discussed.
Resumo:
An oxovanadium-salen complex (NAP-ethylene-bis(salicylidenciminato) oxovanadium) thin film deposited on a graphite-polyurethane electrode was investigated with regard to its potential use for detection of L-dopa in flow injection system. The oxovanadium(IV)/oxovanadium(V) redox couple of the modified electrode was found to mediate the L-dopa oxidation before its use in the FIA system. Experimental parameters, such as pH of the carrier solution, flow rate, sample volume injection and probable interferents were investigated. Under the optimized FIA conditions, the amperometric signal was linearly dependent on the L-dopa concentration over the range 1.0 x 10(-1) to 1.0 x 10(-4) mol L-1 (I-anodic, mu A) = 0.01 + 0.25 [L-dopa mu mol L-1]) with a detection limit (S/N = 3) of 8.0 x 10(-7) mol L-1 and a sampling frequency of 90 h(-1) was achieved. For a concentration of 1.0 x 10(-5) mol L-1 L-dopa, the R.S.D. of nine consecutive measurements was 3.7%. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical preparation described herein involved the electrocatalytic oxidation of sulfite on a platinum electrode modified with nanostructured copper salen (salen=N,N'-ethylenebis(salicylideneiminato)) polymer films. The complex was prepared and electropolymerized at a platinum electrode in a 0.1 mol L-1 solution of tetrabutylammonium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.4V vs. SCE. After cycling the modified electrode in a 0.50 mol L-1 KCI solution, the estimated surface concentration was found to be equal to 2.2 x 10(-9) Mol cm(-2). This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the copper(II)/copper(III) couple. The potential peaks of the modified electrode in the electrolyte solution (aqueous) containing the different anions increase with the decrease of the ionic radius, demonstrating that the counter-ions influence the voltammetric behavior of the sensor. The potential peak was found to be linearly dependent upon the ratio [ionic charge]/[ionic radius]. The oxidation of the sulfite anion was performed at the platinum electrode at +0.9V vs. SCE. However, a significant decrease in the overpotential (+0.45V) was obtained while using the sensor, which minimized the effect of oxidizable interferences. A plot of the anodic current vs. the sulfite concentration for chronoamperometry (potential fixed = +0.45V) at the sensor was linear in the 4.0 x 10(-6) to 6.9 x 10(-5) mol L-1 concentration range and the concentration limit was 1.2 x 10(-6) mol L-1. The reaction order with respect to sulfite was determined by the slope of the logarithm of the current vs. the logarithm of the sulfite concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N'-ethylene bis(salicylideneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at platinum electrode in acetonitrile/tetrabutylammonium perchlorate by cyclic voltammetry. The voltammetric behavior of the sensor was investigated in 0.5 mol L-1 KCl solution in the absence and presence of molecular oxygen. Thus, with the addition of oxygen to the solution, the increase of cathodic peak current (at -0.25 V vs. saturated calomel electrode (SCE)) of the modified electrode was observed. This result shows that the nickel-salen film on electrode surface promotes the reduction of oxygen. The reaction can be brought about electrochemically, where the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the molecular oxygen in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the oxygen reduction. A plot of the cathodic current vs. the dissolved oxygen concentration for chronoamperometry (fixed potential = -0.25 V vs. SCE) at the sensor was linear in the 3.95-9.20 mg L-1 concentration range and the concentration limit was 0.17 mg L-1 O-2. The proposed electrode is useful for the quality control and routine analysis of dissolved oxygen in commercial samples and environmental water. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with a commercial O-2 sensor. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
An amperometric dipyrone sensor based on a polymeric nickel-salen (salen = N,N'-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. After cycling the modified electrode in a 0.50 mol L-1 KCl solution, the estimated surface concentration was found to be equal to 1.29 x 10(-9) mol cm(-2). This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the nickel(II)/nickel(III) couple. A plot of the anodic current versus the dipyrone concentration for chronoamperometry (potential fixed = +0.50 V) at the sensor was linear in the 4.7 x 10(-6) to 1.1 x 10(-4) mol L-1 concentration range and the concentration limit was 1.2 x 10(-6) mol L-1. The proposed electrode is useful for the quality control and routine analysis of dipyrone in pharmaceutical formulations.
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N '-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. The voltammetric behavior of the modified electrode was investigated in 0.5 mol L-1 KCl solution in the absence and presende of molecular oxygen. A significant increased of cathodic peak current (at -0.20 vs. SCE) of the modified electrode with addition of oxygen to the solution was observed. This result shows that the nickel-salen film on the surface of the electrode promotes the reduction of oxygen. The reaction can be brought about electrochemically where in the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the oxygen molecular in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The plot of the cathodic current versus the dissolved oxygen concentration for chronoamperometry (potential fixed = -0.20 V) at the sensor was linear in the concentration range of 3.95 to 9.20 mg L-1 with concentration limit of 0.17 mg L-1 O-2. The modified electrode proposed is useful for the quality control and routine analysis of dissolved oxygen in commercial water and environmental water samples. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with an O-2 commercial sensor. (C) 2011 Published by Elsevier Ltd.
Resumo:
This paper presents results of physical and mechanical tests in polyester (PET) and polypropilene (PP) nonwoven geotextiles that were exposed to weathering conditions (solar radiation, humidity, wind, rain) after some specific periods of exposure (1, 2, 3 and 4 months). ASTM D5970 and Brazilian standards (NBR) recommendation were followed in this research. Results show variations in tensile properties and in the mass per unit area. Variations in the deformations were more significant in the PP geotextile when compared to the PET geotextile.
Architecture and relevance of several strongly adhered biofilms over a polyester imide (PEI) surface
Resumo:
Um estudo microscópico foi considerado para analisar a eventual adesão de fungos sobre uma superfície de poliéster-imida presente em fios de cobre esmaltados. A microscopia eletrônica de varredura, permitiu observar nestes biofilmes aderidos, uma alta quantidade de pigmentos, hifas e um arsenal enzimático possivelmente atuando na superfície desta macromolécula. Devido a natureza altamente aromática deste material e traços de derivados fenólicos usados como solventes - que se fazem ainda presentes no polímero já reticulado, uma certa atividade anti-fúngica poderia ser esperada, todavia não foram observadas alterações no crescimento dos microrganismos, bem como no processo de adesão dos fungos. Adicionalmente a este fato, os fios esmaltados revelaram total descaracterização de suas propriedades isolantes. Os estudos visam compreender e avaliar o grande potencial demonstrado pelos fungos que poderia em caráter vindouro, explorado em processos de biodeterioração e biodegradação
Resumo:
Curauá fiber processing characterization has been performed throughout the different processing steps. Unsaturated polyester has been used as matrix in the production of curauá reinforced composite samples. Compression molding process has been used to prepare the samples. Tensile strength, impact resistance, flexural strength, Young's modulus and elongation at break have been accessed for curauá composites in comparison with fiberglass composites. Mechanical properties were found not to attend the company's internal standards specification. However, the work has shown some alternatives to solve these problems such as the modification of equipment characteristics and resin formulation, the necessity of incorporation of a higher content of fiber and the possibility of using a new type of filler. Copyright © 2000 Society of Automotive Engineers, Inc.
Resumo:
This work has been performed at Tapetes Sao Carlos-Brazil with the cooperation of the DaimlerChrysler Research Center Team in Ulm - Germany. The objective of the present paper is to report the results obtained with natural fiber reinforced unsaturated polyester (UP) composites, concerning surface quality measurements. The fibers that have been chosen for this work were sisal and curaua. The samples were produced by compression molding technique and afterwards submitted to three different tests, namely: a) thermal aging; b) water absorption and c) artificial weathering. The surface parameters measured before and after the tests were gloss, haze, short and long-waviness. The results have shown that after the tests there is a high loss of gloss, a high increase in haze, and a high increase in short and long-waviness as well. Curaua reinforced composites had a slightly better behavior when compared with sisal reinforced composites. The effect of the presence of filler and the addition of thermoplastic polyester (TP) on the material behavior has not been evidently detected. This result shows that the conventional technology/methods applied to UP-Fiberglass systems cannot be transferred to natural fibers without any modification. The fiber-matrix interaction and its response to the presence of additives must be fully understood before a successful processing route can be developed for painted natural fibers reinforced UP. Copyright © 2001 Society of Automotive Engineers, Inc.