12 resultados para Polycaprolactone
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The effect of UV-C irradiation of the TPS and PCL biocomposites with sisal bleached fibers was investigated. The biocomposite was UV-C irradiated at room temperature under air atmosphere. The structural and morphological changes produced when the films were exposed to UV irradiation for 142 h, were monitored using Scanning Electron Microscopy (SEM), Mechanical Tensile Tests, Differential Scanning Calorimetry (DSC), X-ray diffraction, Thermogravimetric analysis (TGA), and Fourier transform infra-red analysis (FTIR). Addition of 5-10% fibers in composites exhibited improved mechanical and thermal properties attributed to more efficient dispersibility of fiber in the matrix and good compatibility between fibers and the matrix polymer, however, after irradiated, the tensile properties decreased due to chain scission. The samples of irradiated PCL and IFS showed crystallinity increase, whereas the blend and composites showed a decrease in crystallinity. The DSC and X-ray diffraction studies suggested interaction between polymers in the blend via carboxyl groups in thermoplastic starch-PCL and hydroxyl groups in fibers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The photodegradation of a 1:1 w/w blend of polycaprolactone and poly(vinyl chloride) has been studied by following carbon dioxide emission during UV exposure. Similar measurements were performed for polycaprolactone and poly(vinyl chloride) homopolymers which were prepared and irradiated in the same way. It was found that the blend gave lower CO2 emission than either of the two homopolymers, indicating that the interaction of the two components in the blend provided a beneficial reduction of photodegradation. It is therefore deduced that the detailed morphological characteristics of the blend have a controlling influence over the photo-oxidation. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Optically transparent membranes from bacterial cellulose (BC)/polycaprolactone (PCL) have been prepared by impregnation of PCL acetone solution into dried BC membranes. UV-Vis measurements showed an increase on transparency in BC/PCL membrane when compared with pristine BC. The good transparency of the BC/PCL can be related to the presence of BC nanofibers associated with deposit of PCL nano-sized spherulites which are smaller than the wavelength of visible light and practically free of light scattering. XRD results show that cellulose type I structure is preserved inside the BC/PCL membrane, while the mechanical properties suggested indicated that PCL acts as a plasticizer for the BC membrane. The novel BC/PCL membrane could be used for preparation of fully biocompatible flexible display and biodegradable food packaging.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The large use of plastics in the world generates a large amount of waste which persists around 200 years in the environment. To minimize this effect is important to search some new polymer materials: the blends of biodegradable polymers with synthetic polymers. It is a large area that needs an Intensive research to investigate the blends properties and its behavior face to the different treatments to aim at the blodegradation. The blends used In this work are: some blodegradable polymers such as: poly(hydroxybutyrate) (PHB) and poly(s-polycaprolactone) (PCL) with a synthetic polymer, polypropylene (PP), in lower concentration. These blends were prepared using an internal mixer (Torque Rheometer), and pressed. These films were submitted to fungus biotreatment. The films analyses will be carried out by Fourier Transform Infrared (FTIR), UV-Vis absorption (UV-Vis), Scanning Electronic Microscopy (SEM), DSC and TGA. © 2008 American Institute of Physics.
Resumo:
Purpose: The present study aimed to evaluate an injectable extended-release formulation of prednisolone acetate (PA) for orbital administration. Methods: Microspheres (MEs) of poly-ε-caprolactone (PCL) containing PA were developed by the method of solvent evaporation. The MEs obtained were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), encapsulation efficiency and in vitro release profile. The in vivo release profile was evaluated in rabbits after periocular injection of an aqueous suspension of MEs. The local biocompatibility of the system was verified by histopathologic analysis of the deployment region. Results: After MEs preparation, morphological analysis by SEM showed the feasibility of the employed method. The content of PA encapsulated was 43 ± 7% and can be considered as satisfactory. The system characterization by DSC technique, in addition to confirm the system stability, did not indicate the existence of interaction between the drug and the polymer. The in vitro release study showed the prolonged-release features of the developed system. Preliminary in vivo study showed the absence of local toxicity and confirmed the prolonged release profile of PA from MEs, suggesting the viability of the developed system for the treatment of orbital inflammatory diseases. Conclusion: The results obtained in this work are relevant and accredit the system developed as a possible alternative to the treatment of inflammatory orbitopathy.
Resumo:
The objective of this work was to develop a modified release system for the local anesthetic lidocaine (LDC), using poly(ε-caprolactone) (PCL) nanospheres (NSs), to improve the pharmacological properties of the drug when administered by the infiltration route. In vitro experiments were used to characterize the system and investigate the release mechanism. The NSs presented a polydispersion index of 0.072, an average diameter of 449.6nm, a zeta potential of -20.1mV, and an association efficiency of 93.3%. The release profiles showed that the release of associated LDC was slower than that of the free drug. Atomic force microscopy analyses showed that the spherical structure of the particles was preserved as a function of time, as well as after the release experiments. Cytotoxicity and pharmacological tests confirmed that association with the NSs reduced the toxicity of LDC, and prolonged its anesthetic action. This new formulation could potentially be used in applications requiring gradual anesthetic release, especially dental procedures. © 2012 Wiley Periodicals, Inc.
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)