45 resultados para Plastid biogenesis

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phylogeny of Celastraceae subfamily Salacioideae (ca. 255 species in the Old and New World tropics) and tribe Lophopetaleae (ca. 29 species in southern Asia and the Austral-Pacific) was inferred using morphological characters together with plastid (matK, trnL-F) and nuclear (ITS and 26S rDNA) genes. Brassiantha, a monotypic genus endemic to New Guinea, is inferred to be more closely related to the clade of Dicarpellum (New Caledonia) and Hypsophila (Queensland, Australia) than it is to Hippocrateoideae or Salacioideae. This unambiguously supported resolution indicates that a nectary disk positioned outside the stamens has been convergently derived in these two lineages. The clade of Kokoona and Lophopetalum is resolved as more closely related to Breria and Elaeodendron than it is to Hippocrateoideae or Salacioideae. Sarawakodendron, a monotypic genus endemic to Borneo, is resolved as sister to Salacioideae. Salacioideae are inferred to have an Old World origin that was followed by a single successful radiation within Central and South America. We infer that capsular fruits are primitive within the clade of Hippocrateoideae + Sarawakodendron + Salacioideae, with berries a synapomorphy for Salacioideae. Based on the resolution of Sarawakodendron as sister to Salacioideae, we hypothesize that the filaments of Sarawakodendron arils are homologous to the spiral filaments in the mucilagenous pulp of Salacioideae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O envelhecimento pode estar associado ao maior acúmulo de lesões celulares decorrentes das espécies reativas do oxigênio e do nitrogênio derivadas do metabolismo mitocondrial. Com a progressão da idade, há acúmulo de proteínas, lipídeos, carboidratos e DNA oxidados em relação a organismos jovens, de acordo com a teoria dos radicais livres. Entretanto, nem sempre os idosos ou animais envelhecidos apresentam maior estresse oxidativo que os jovens. Este artigo discute o paradoxo da teoria dos radicais livres de acordo com a teoria da biogênese da manutenção adequada do metabolismo mitocondrial. Diversos fatores podem contribuir para a redução do estresse oxidativo, como a hormese induzida pela prática regular de exercícios físicos, a restrição calórica, a ingestão de antioxidantes nutricionais e o aumento da produção de antioxidantes celulares que. em conjunto, estes promovem a expressão das sirtuínas e das proteínas do choque térmico, protegendo a integridade e funcionalidade mitocondriais, reduzindo o estresse oxidativo e nitrosativo, o que está associado à redução do envelhecimento e aumento da longevidade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aims Considering that few studies on nectary anatomy and ultrastructure are available for chiropterophilous flowers and the importance of Hymenaea stigonocarpa in natural 'cerrado' communities, the present study sought to analyse the structure and cellular modifications that take place within its nectaries during the different stages of floral development, with special emphasis on plastid dynamics.Methods For the structural and ultrastructural studies the nectary was processed as per usual techniques and studied under light, scanning and transmission electron microscopy. Histochemical tests were employed to identify the main metabolites on nectary tissue and secretion samples.Key Results The floral nectary consists of the inner epidermis of the hypanthium and vascularized parenchyma. Some evidence indicates that the nectar release occurs via the stomata. The high populations of mitochondria, and their juxtaposition with amyloplasts, seem to be related to energy needs for starch hydrolysis. Among the alterations observed during the secretory phase, the reduction in the plastid stromatic density and starch grain size are highlighted. When the secretory stage begins, the plastid envelope disappears and a new membrane is formed, enclosing this region and giving rise to new vacuoles. After the secretory stage, cellular structures named 'extrastomatic bodies' were observed and seem to be related to the nectar resorption.Conclusions Starch hydrolysis contributes to nectar formation, in addition to the photosynthates derived directly from the phloem. In these nectaries, the secretion is an energy-requiring process. During the secretion stage, some plastids show starch grain hydrolysis and membrane rupture, and it was observed that the region previously occupied by this organelle continued to be reasonably well defined, and gave rise to new vacuoles. The extrastomatic bodies appear to be related to the resorption of uncollected nectar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrastructural features and the plastid changes caused by sample preparation were studied in sieve elements of Panicum maximum leaves. Samples of expanded leaves, taken near the ligule region, were fixed and processed by common light and transmission electron microscopy methods. In mature sieve-tube elements, the protoplast is electron-translucent and plastids are the most frequent organelles. Mitochondria and smooth endoplasmic reticulum segments are also visible and occupy a parietal position within the cell. The plastids are globular and show electron-dense proteinaceous inclusions in the stroma. The protein crystals are predominantly cuneate, but thin crystalloids and amorphous and/or filamentous proteins also occur. The presence of intact plastids plus others in different phases of plastid envelope rupture were interpreted as evidence that this rupture is a normal event in response to injury. This plastid envelope rupture is possibly activated by the release of pressure in the sieve-tube element. After plastid membrane vesiculation, the stroma and the protein crystals are dispersed within the sieve-element ground cytoplasm. The vesicles originating from the plastid envelope move to one cell pole, while protein crystalloids move to the opposite pole and agglomerate in the sieve-plate region. Our findings indicate that these protein crystalloids, which deposit in the sieve plate, may act in sieve-plate pores occlusion, preventing the release of phloem sap, similar to the role of P-protein in dicotyledons. (c) 2008 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maytenus s. l. (including Gymnosporia) is a morphologically diverse genus of about 300 species that is widely distributed in the tropics and subtropics of both the Old and New Worlds. Its delimitation has been extensively debated and despite the segregation of Gymnosporia, Maytenus s. s. remains a heterogeneous, polyphyletic group. To delimit natural segregate genera we increased taxon sampling and generated sequences from two nuclear gene regions (ITS and 26S rDNA) and two plastid loci (matK and trnL-F) to analyze together with morphological characters. Both Moya and Tricerma were found to be nested within the New World Maytenus and are recognized as synonyms of Maytenus s. s.. In contrast, the three New World species of Gymnosporia are recognized as a new genus that is closely related to Gyminda. Haydenia is erected for these three species: H. gentryi, H. haberiana, and H. urbaniana. One or more previously proposed or novel genera are required to accommodate the systematically difficult African Maytenus. Putterlickia, and most likely Gloveria, are nested within Gymnosporia and should be synonymized with that genus. New binomials are required for four Chinese and one Rapan species of Gymnosporia that have been previously treated only as Maytenus: Gymnosporia austroyunnanensis, G. confertiflora, G. dongfangensis, G. guangxiensis, and G. pertinax. Austral-Pacific Maytenus are transferred to Denhamia, requiring eight new binomials: Denhamia bilocularis, D. cunninghamii, D. cupularis, D. disperma, D. fasciculiflora, D. ferdinandii, D. fournieri, and D. silvestris. Existing intrageneric classifications of Gymnosporia and Maytenus s. s. were not supported in their entirety. Gymnosporia is inferred to have had an African origin followed by dispersals to Madagascar, southeast Asia and the Austral-Pacific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As plataformas de sequenciamento de nova geração são uma alternativa poderosa para estudos de genômica estrutural e funcional. Na genômica de plantas, os trabalhos com as novas plataformas têm sido destinados ao sequenciamento de transcritos, ressequenciamento ou sequenciamento de novo de genomas plastidiais. Neste trabalho, são detalhadas as tecnologias das plataformas mais utilizadas atualmente, bem como é revisada a aplicação dessas tecnologias na genômica estrutural e funcional de plantas.