18 resultados para Phylogenies
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis, a disease confined to Latin America and of marked importance in the endemic areas due to its frequency and severity. This species is considered to be clonal according to mycological criteria and has been shown to vary in virulence. To characterize natural genetic variation and reproductive mode in this fungus, we analyzed P. brasiliensis phylogenetically in search of cryptic species and possible recombination using concordance and nondiscordance of gene genealogies with respect to phylogenies of eight regions in five nuclear loci. Our data indicate that this fungus consists of at least three distinct, previously unrecognized species: S1 (species 1 with 38 isolates), PS2 (phylogenetic species 2 with six isolates), and PS3 (phylogenetic species 3 with 21 isolates). Genealogies of four of the regions studied strongly supported the PS2 clade, composed of five Brazilian and one Venezuelan isolate. The second clade, PS3, composed solely of 21 Colombian isolates, was strongly supported by the alpha-tubulin genealogy. The remaining 38 individuals formed S1. Two of the three lineages of P. brasiliensis, S1 and PS2, are sympatric across their range, suggesting barriers to gene flow other than geographic isolation. Our study provides the first evidence for possible sexual reproduction in P. brasiliensis S1, but does not rule it out in the other two species.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The taxonomic and phylogenetic relationships of Trypanosoma vivax are controversial. It is generally suggested that South American, and East and West African isolates could be classified as subspecies or species allied to T. vivax. This is the first phylogenetic study to compare South American isolates (Brazil and Venezuela) with West/East African T. vivax isolates. Phylogeny using ribosomal sequences positioned all T. vivax isolates tightly together on the periphery of the clade containing all Salivarian trypanosomes. The same branching of isolates within T. vivax clade was observed in all inferred phylogenies using different data sets of sequences (SSU, SSU plus 5.8S or whole ITS rDNA). T. vivax from Brazil, Venezuela and West Africa (Nigeria) were closely related corroborating the West African origin of South American T. vivax, whereas a large genetic distance separated these isolates from the East African isolate (Kenya) analysed. Brazilian isolates from cattle asymptomatic or showing distinct pathology were highly homogeneous. This study did not disclose significant polymorphism to separate West African and South American isolates into different species/subspecies and indicate that the complexity of T. vivax in Africa and of the whole subgenus Trypanosoma (Duttonella) might be higher than previously believed. © 2006 Cambridge University Press.
Resumo:
Few species of the tribe Lophiohylini have been karyotyped so far, and earlier analyses were performed mainly with standard staining. Based on the analysis of seven species with use of routine banding and molecular cytogenetic techniques, the karyotypes were compared and the cytogenetic data were evaluated in the light of the current phylogenies. A karyotype with 2n = 24 and NOR in the chromosome 10 detected by Ag-impregnation and FISH with an rDNA probe was shared by Aparasphenodon bokermanni Miranda-Ribeiro, 1920, Itapotihyla langsdorffii (Duméril and Bibron, 1841), Trachycephalus sp., T. mesophaeus (Hensel, 1867), and T. typhonius (Linnaeus, 1758). Phyllodytes edelmoi Peixoto, Caramaschi et Freire, 2003 and P. luteolus (Wied-Neuwied, 1824) had reduced the diploid number from 2n = 24 to 2n = 22 with one of the small-sized pairs clearly missing, and NOR in the large chromosome 2, but the karyotypes were distinct regarding the morphology of chromosome pairs 4 and 6. Based on the cytogenetic and phylogenetic data, it was presumed that the chromosome evolution occurred from an ancestral type with 2n = 24, in which a small chromosome had been translocated to one or more unidentified chromosomes. Whichever hypothesis is more probable, other rearrangements should have occurred later, to explain the karyotype differences between the two species of Phyllodytes Wagler, 1830. The majority of the species presented a small amount of centromeric C-banded heterochromatin and these regions were GC-rich. The FISH technique using a telomeric probe identified the chromosome ends and possibly (TTAGGG)n-like sequences in the repetitive DNA out of the telomeres in I. langsdorffii and P. edelmoi. The data herein obtained represent an important contribution for characterizing the karyotype variability within the tribe Lophiohylini scarcely analysed so far. © Simone Lilian Gruber et al.
Resumo:
Gymnotus (Gymnotiformes, Gymnotidae) is the most diverse known Neotropical electric knife fish genus. Cytogenetic studies in Gymnotus demonstrate a huge karyotypic diversity for this genus, with diploid numbers ranging from 34 to 54. The NOR are also variable in this genus, with both single and multiple NORs described. A common interpretation is that the single NOR pair is a primitive trait while multiple NORs are derivative. However this hypothesis has never been fully tested. In this report we checked if the NOR-bearing chromosome and the rDNA site are homeologous in different species of the genus Gymnotus: G. carapo (2n = 40, 42, 54), G. mamiraua (2n = 54), G. arapaima (2n = 44), G. sylvius (2n = 40), G. inaequilabiatus (2n = 54) and G. capanema (2n = 34), from the monophyletic group G. carapo (Gymnotidae-Gymnotiformes), as well as G. jonasi (2n = 52), belonging to the G1 group. They were analyzed with Fluorescence in situ hybridization (FISH) using 18S rDNA and whole chromosome probes of the NOR-bearing chromosome 20 (GCA20) of G. carapo (cytotype 2n = 42), obtained by Fluorescence Activated Cell Sorting. All species of the monophyletic G. carapo group show the NOR in the same single pair, confirmed by hybridization with CGA20 whole chromosome probe. In G. jonasi the NORs are multiple, and located on pairs 9, 10 and 11. In G. jonasi the GCA20 chromosome probe paints the distal half of the long arm of pair 7, which is not a NOR-bearing chromosome. Thus these rDNA sequences are not always in the homeologous chromosomes in different species thus giving no support to the hypothesis that single NOR pairs are primitive traits while multiple NORs are derived. The separation of groups of species in the genus Gymnotus proposed by phylogenies with morphologic and molecular data is supported by our cytogenetic data. © 2013 Milhomem et al.
Resumo:
The family Callichthyidae, divided into the subfamilies Corydoradinae and Callichthyinae, contains more than 200 species of armoured catfishes distributed throughout the Neotropics, as well as fossil species dating from the Palaeocene. Both subfamilies are very widely distributed throughout the continent, with some species ranges extending across multiple hypothesized biogeographical barriers. Species with such vast geographical ranges could be made up of multiple cryptic populations that are genetically distinct and have diverged over time. Although relationships among Callichthyinae genera have been thoroughly investigated, the historical biogeography of the Callichthyinae and the presence of species complexes have yet to be examined. Furthermore, there is a lack of fossil-calibrated molecular phylogenies providing a time frame for the evolution of the Callichthyinae. Here, we present a novel molecular data set for all Callichthyinae genera composed of partial sequences of mitochondrial and nuclear markers. These data were used to construct a fossil-calibrated tree for the Callichthyinae and to reconstruct patterns of spatiotemporal evolution. All phylogenetic analyses [Bayesian, maximum likelihood and maximum parsimony (MP)] resulted in a single fully resolved and well-supported hypothesis for the Callichthyinae, where Dianema is the sister group of all the remaining genera. Results suggest that the ancestry of most Callichthyinae genera originated in the Amazonas basin, with a number of subsequent ancestral dispersal events between adjacent basins. High divergences in sequences and time were observed for several samples of Hoplosternum littorale, Megalechis picta and Callichthys callichthys, suggesting that these species may contain cryptic diversity. The results highlight the need for a taxonomic revision of species complexes within the Callichthyinae, which may reveal more diversity within this relatively species-poor lineage. © 2013 Blackwell Verlag GmbH.
Resumo:
A long-standing interest in cactus taxonomy has existed since the Linnaean generation, but an appreciation of the reproductive biology of cacti started early in the 1900s. Numerous studies indicate that plant reproductive traits provide valuable systematic information. Despite the extensive reproductive versatility and specializations in breeding systems coupled with the striking floral shapes, the reproductive biology of the Cactaceae has been investigated in approximately 10% of its species. Hence, the systematic value of architectural design and organization of internal floral parts has remained virtually unexplored in the family. This study represents the most extensive survey of flower and nectary morphology in the Cactaceae focusing on tribes Hylocereeae and Rhipsalideae (subfamily Cactoideae). Our objectives were (1) to conduct comparative morphological analyses of flowers and floral nectaries and (2) to compare nectar solute concentration in these two tribes consisting of holo- and semi-epiphytic species. Flower morphology, nectary types, and sugar concentration of nectar have strong taxonomic implications at the tribal, generic and specific levels. Foremost, three types of nectaries were found, namely chamber nectary (with the open and diffuse subtypes), furrow nectary (including the holder nectary subtype), and annular nectary. All Hylocereeae species possess chamber nectaries, in which the nectarial tissue has both trichomes and stomata. The Rhipsalideae are distinguished by two kinds of floral nectaries: furrow and annular, both nectary types with stomata only. The annular nectary type characterizes the genus Rhipsalis. Nectar concentration is another significant taxonomic indicator separating the Hylocereeae and Rhipsalideae and establishing trends linked to nectar sugar concentration and amount of nectar production in relation to flower size. There is an inverse relationship between flower size and amount of nectar production in the smaller Rhipsalideae flowers, in which nectar concentration is more than two-fold higher despite the smaller volume of nectar produced when compared to the large Hylocereeae flowers. Variability of nectary morphology and nectar concentration was also evaluated as potential synapomorphic characters in recent phylogenies of these tribes. In conclusion, our data provide strong evidence of the systematic value of floral nectaries and nectar sugar concentration in the Cactaceae, particularly at different taxonomic levels in the Hylocereeae and Rhipsalideae. © 2013 Perspectives in Plant Ecology, Evolution and Systematics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)