26 resultados para Photoelasticity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The authors describe a literature revision on assessing stresses in buccomaxillary prostheses photoelasticity, finite element technique, and extensometry. They describe the techniques and the importance for use of each method in buccomaxillary prostheses with implants and the need of accomplishing more studies in this scarce literary area.
Resumo:
One of the main reasons for the failure in dental implant treatments is the overload, which can cause bone resorption and later, the osseointegration loss in the implant. Therefore, the aim of this study was to analyze the tension generated around dental implants in the rehabilitation of three mandible posterior teeth, varying the connection type, the disposal, and the quantity of implants. The photoelasticity method was used in order to accomplish it. Through photoelasticity, the quantity and localization of the tensions around the implants in the different studied groups were compared (three straight line implants, three offset placement implants, two implants with a mesial cantilever, and two implants with a pontic). The results showed that the tension quantity and disposition around the dental implants of the connection external hexagon and internal hexagon were similar in all groups. In the group where the cantilever was used, an increase of the tension around the implant, adjacent to the cantilever, was observed. From the results it is concluded that the type of connection used in this study did not influence the tension quantity and distribution around the implants; however, the prosthetic configuration with the cantilever use, led to an increase of the tension around the implant, adjacent to the cantilever.
Resumo:
Introduction and Objective: Photoelasticity consists of an experimental technique of stress analysis. This technique is very used in most different areas including Dentistry. This literature review presents the several applications of photoelastic technique in Dentistry the several applications of photoelastic technique in Dentistry as well as its advantages and disadvantages. Literature review: Based on this method of analysis, it is possible the verification of the stress distribution and deformation in structures with complex geometry as maxilla and mandible. It can be used to evaluate the distribution of stress on several types of prosthesis as removable partial denture systems with different retention systems, conventional implant prosthesis, overdentures and Brånemark protocols. Moreover, photoelasticity can be used to assess the stress generated by various by various orthodontic movements, different orthodontic systems and different materials (orthodontic wires). In addition, it is used to analyze different defects of maxillectomy, splint types on traumatized tooth and post-core restoration methods. This technique can also be used to assess dental instruments such as evaluation of different designs of periodontal probe. Conclusion: The photoelastic analysis has been a technique of great importance in health area studies, more specifically in Dentistry. Based on this method of analysis, it is possible to measure the stress distribution and deformation in structures with complex geometry as maxilla and mandible.
Resumo:
Purpose:The purpose of this study was to evaluate stress transfer patterns between implant-tooth-connected prostheses comparing rigid and semirigid connectors and internal and external hexagon implants.Materials and Methods:Two models were made of photoelastic resin PL-2, with an internal hexagon implant of 4.00 x 13 mm and another with an external hexagon implant of 4.00 x 13 mm. Three denture designs were fabricated for each implant model, incorporating one type of connection in each one to connect implants and teeth: 1) welded rigid connection; 2) semirigid connection; and 3) rigid connection with occlusal screw. The models were placed in the polariscope, and 100-N axial forces were applied on fixed points on the occlusal surface of the dentures.Results:There was a trend toward less intensity in the stresses on the semirigid connection and solid rigid connection in the model with the external hexagon; among the three types of connections in the model with the internal hexagon implant, the semirigid connection was the most unfavorable one; in the tooth-implant association, it is preferable to use the external hexagon implant.Conclusions:The internal hexagon implant establishes a greater depth of hexagon retention and an increase in the level of denture stability in comparison with the implant with the external hexagon. However, this greater stability of the internal hexagon generated greater stresses in the abutment structures. Therefore, when this association is necessary, it is preferable to use the external hexagon implant.
Resumo:
The aim of this study was to assess the behavior and stress distribution of 3 retention systems associated with implant for facial prosthesis by using the photoelasticity method. A photoelastic model was made from the replica of the orbital region on the left side of a dry skull with two 4-mm implants fixed in the superior orbital region. Three facial prosthetic retention systems were made for this study: O'ring, bar-clip, and magnets. The set (model/retention systems/prosthesis) was placed in a polariscope, and then traction began to be applied to the retention systems. The limit values for removal of the retention system were obtained by tests performed in an EMIC Universal test machine. The results were obtained by observation during the experiments and by photographic record of the stress behavior in the photoelastic model, resulting from the traction of the retention systems. In the magnet system, a lowest formation of fringes was verified both around and between the implants; in the O'ring system, the formation of photoelastic fringes was noted between the implants in the apical region; and in the bar-clip system, there was a greater concentration of colored fringes in the regions between the implants and cervical area. Based on the results obtained, it was concluded that the retention systems produced different stress distribution characteristics that, in general, were concentrated in the area around the implants, and the highest concentration of fringes, in increasing order, occurred ill the retention systems of the magnets, O'ring, and bar-clip.
Resumo:
The aim of this study was to perform a photoelastic analysis of stress distribution on straight and angulated implants with different crowns (screwed and cemented). Three models were made of photoelastic resin PL-2: model 1: external hexagon implant 3.75 x 10.00 mm at 0 degrees; model 2: external hexagon implant 3.75 x 10.00 mm at 17 degrees; model 3: external hexagon implant 3.75 x 10.00 mm at 30 degrees. Axial and oblique (45 degrees) load (100 N) was applied with a universal testing machine. The photoelastic fringes on the models were recorded with a digital camera and visualized in a graphic software for qualitative analysis. The axial loading generated the same pattern of stress distribution. The highest stresses were concentrated between medium and apical thirds. The oblique loading generated a similar pattern of stress distribution in the models with similar implant angulation; the highest stress was located on the cervical region opposite to implant angulation and on the apical third. It was concluded that the higher the implant angulation, the higher the stress value, independent of crown type. The screwed prostheses exhibited the highest stress concentration. The oblique load generated higher stress value and concentration than the axial load.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The application of engineering knowledge in dentistry has helped the understanding of biomechanics aspects related to osseointegrated implants. Several techniques have been used to evaluate the biomechanical load oil implants comprising the use of photoelastic stress analysis, finite element stress analysis, and strain-gauge analysis. Therefore, the purpose of this Study was to describe engineering methods used in dentistry to evaluate the biomechanical behavior of osseointegrated implants. Photoelasticity provides good qualitative information oil the overall location and concentration of stresses but produces limited quantitative information. The method serves as ail important tool for determining the critical stress points in a material and is often used for determining stress concentration factors in irregular geometries. The application of strain-gauge method oil dental implants is based oil the use of electrical resistance strain gauges and its associated equipment and provides both in vitro and vivo measurements strains under static and dynamic loads. However, strain-gauge method provides only the data regarding strain at the gauge. Finite element analysis can Simulate stress using a computer-created model to calculate stress, strain, and displacement. Such analysis has the advantage of allowing several conditions to be changed easily and allows measurement of stress distribution around implants at optional points that are difficult to examine clinically All the 3 methodologies call be useful to evaluate biomechanical implant behavior close to the clinical condition but the researcher should have enough knowledge in model fabrication (experimental delineation) and results analysis.
Resumo:
Background: Considering that an increasing number of patients are victims of mutilator surgical resections, these studies are important for treatment success of rehabilitation of patients presenting oronasal communication.Purpose: The aim of this study was to assess the stress distribution through photoelasticity in palatal obturator prostheses with different attachment systems for implants.Methods: Two photoelastic models were obtained from an experimental maxillary model presenting an oronasal communication. One model was fabricated without implant, and the other with 2 implants 10 mm in length inserted in the left crest. Four colorless palatal obturator prostheses were fabricated. One prosthesis presented no attachment system, whereas the remaining prostheses were adapted to 3 attachment systems. The assembly was positioned in a circular polariscope for application of axial load.Results: The results were based on photographic records of stress in the photoelastic model submitted to loading. The records revealed higher stress concentration on the bar-clip system followed by the O'ring/bar-clip and O'ring systems, respectively. A homogeneous stress distribution was observed on the photoelastic model with the mucous-supported prosthesis.Conclusions: The attachment systems generated different characteristics of stress distribution that was concentrated surrounding the implants. The bar-clip system exhibited the highest stress concentration on the alveolar crest.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to present a literature review about photoelasticity, a laboratory method for evaluation of implants prosthesis behavior. Fixed or removable prostheses function as levers on supporting teeth, allowing forces to cause tooth movement if not carefully planned. Hence, during treatment planning, the dentist must be aware of the biomechanics involved and prevent movement of supporting teeth, decreasing lever-type forces generated by these prosthesis. Photoelastic analysis has great applicability in restorative dentistry as it allows prediction and minimization of biomechanical critical points through modifications in treatment planning.
Resumo:
Complete and partial loss of maxillary bone may jeopardize oral physiology and generate complications as oral-sinus-nasal communication. Palatal obturator prostheses are a treatment alternative for rehabilitation of these patients. The aim of this study was to assess stress distribution, through photoelasticity, on palatal obturator prostheses associated with different attachment systems (o'ring, bar clip, and o'ring/bar clip) of implants and submitted to relining. Two photoelastic models were fabricated according to an experimental maxillary model with oral-sinus-nasal communication. One model did not present implants, whereas the other included 2 implants with 13.0 mm in length in the left ridge. Four colorless maxillary obturator prostheses were fabricated and relined with soft silicone. One of these prostheses presented no attachment system, whereas the remaining prostheses included attachment systems adapted to the implants. The assembly (model/attachment system/prosthesis) was positioned in a circular polariscope during loading with 100 N at 10 mm/s. The results were based on observation during the experiment and photographic records of stress on the photoelastic model. The bar clip system exhibited the highest stress concentration followed by o'ring/bar clip and o'ring systems. The attachment systems presented different stress distribution with greater concentration surrounding the implants and homogenous stress distribution on the photoelastic model without implants. The highest concentration of fringes occurred, in ascending order, with o'ring, o'ring/bar clip, and bar clip systems.
Resumo:
Objectives: The maintenance and stability of peri-implantar soft tissue seem to be related to the crestal bone around the implant platform and different implant designs connections might affect this phenomenon. The aim of this study was to evaluate by photoelastic analysis the stress distribution in the cervical and apical site of implant-abutment interface of conventional implant joints (external hex, internal hex and cone morse) and compare to the novel platform switching design. Materials and methods: It was fabricated photoelastic models using five different implant-abutment connection, one set of external hex (Alvim Ti, Neodent, Curitiba, Brazil), one set of internal hex (Full Osseotite, Biomet 3i, Florida, USA), one cone morse set (Alvim CM, Neodent, Curitiba, Brazil), and two sets of internal hex plus platform switching concept (Alvim II Plus, Neodent, Curitiba, Brazil) (Certain Prevail, Biomet 3i, Florida, USA). These models were submitted to two compressive loads, axial from 20 kgf (load I) and another (load II), inclined 45° from 10 kgf. During the qualitative analysis, digital pictures were taken from a polariscope, for each load situation. For the quantitative analyses in both situations of load, the medium, minimum and maximum in MPa values of shear strain were determined in the cervical and apical site. The Kruskal-Wallis test was used to compare the results between the different systems and between cervical and apical site were compared using Mann-Whitney U test. Results: The results from qualitative analysis showed less concentration of strain in the cervical area to the internal hex plus platform switching (Certain Prevail), in both situation of load. The same results were get in the quantitative analysis, showing less stress concentrations around the implant Certain Prevail with internal hex plus the novel design (17.9 MPa to load I and 29.5 MPa to load II), however, without statistical significant difference between the systems. Conclusion: The minor stress concentration strongly suggest the use of platform switching design as a manner to prevent bone loss around the implant-abutment platform. Clinical Significance: From the result of this study its possible to make clinical decision for implant system which provides implant components with platform switching characteristics.
Resumo:
Maxillary defects resulting from cancer, trauma, and congenital malformation affect the chewing efficiency and retention of dentures in these patients. The use of implant-retained palatal obturator dentures has improved the self-esteem and quality of life of several subjects. We evaluate the stress distribution of implant-retained palatal obturator dentures with different attachment systems by using the photoelastic analysis images. Two photoelastic models of the maxilla with oral-sinus-nasal communication were fabricated. One model received three implants on the left side of the alveolar ridge (incisive, canine, and first molar regions) and the other did not receive implants. Afterwards, a conventional palatal obturator denture (control) and two implant-retained palatal obturator dentures with different attachment systems (O-ring; bar-clip) were constructed. Models were placed in a circular polariscope and a 100-N axial load was applied in three different regions (incisive, canine, and first molar regions) by using a universal testing machine. The results were photographed and analyzed qualitatively using a software (Adobe Photoshop). The bar-clip system exhibited the highest stress concentration followed by the O-ring system and conventional denture (control). Images generated by the photoelastic method help in the oral rehabilitator planning. © 2013 SPIE.
Resumo:
Pós-graduação em Odontologia - FOA