7 resultados para Photoassociation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Photoassociation is a possible route for the formation of chemical bonds. In this process, the binding of colliding atoms can be induced by means of a laser field. Photoassociation has been studied in the ultracold regime and also with temperatures well above millikelvins in the thermal energy domain, which is a situation commonly encountered in the laboratory. A photoassociation mechanism can be envisioned based on the use of infrared pulses to drive a transition from free colliding atoms on the electronic ground state to form a molecule directly on that state. This work takes a step in this direction, investigating the laser-pulse-driven formation of heteronuclear diatomic molecules in a thermal gas of atoms including rotational effects. Based on the assumption of full system controllability, the maximum possible photoassociation yield is deduced. The photoassociation probability is calculated as a function of the laser parameters for different temperatures. Additionally, the photoassociation yield induced by subpicosecond pulses of a priori fixed shape is compared to the maximum possible yield.
Resumo:
We develop a systematic scheme to treat binary collisions between ultracold atoms in the presence of a strong laser field, tuned to the red of the trapping transition. We assume that the Rabi frequency is much less than the spacing between adjacent bound-state resonances, In this approach we neglect fine and hyperfine structures, but consider fully the three-dimensional aspects of the scattering process, up to the partial d wave. We apply the scheme to calculate the S matrix elements up to the second order in the ratio between the Rabi frequency and the laser detuning, We also obtain, fur this simplified multichannel model, the asymmetric line shapes of photoassociation spectroscopy, and the modification of the scattering length due to the light field at low, but finite, entrance kinetic energy. We emphasize that the present calculations can be generalized to treat more realistic models, and suggest how to carry out a thorough numerical comparison to this semianalytic theory. [S1050-2947(98)04902-6].
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the formation of molecules under the action of external field acting during the atomic collision. To describe this process, the collision of atomic pairs, we use the Morse oscillator model driven The study was developed from the standpoint of classical mechanics by analyzing the sensitivity of the system with respect to initial conditions, the verification of chaotic dynamics associated with the process of formation of molecules with laser and analysis of system dynamics and the likelihood of photoassociation in response to the external field parameters
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of the present work was to study the control of the dynamics of diatomic heteronuclear molecules interacting with electric fields created by lasers. Specifically in this work, the molecular photoassociation phenomenon will be analyzed. At this phenomenon, the atom's relative movement is described by a particle that moves in a morse potential well under the influence of an external time dependant force related to the external field. Based on the optimum control theory (OCT), it is presented at the present work laser pulses that alternate a given initial molecular state to a desirable end state, wich in this work was represented by the minimization of a cost functional that indicates how close. To do so, a computational sistem know as Genetic Algorithm (GA) was developed that can be characterizes as an extremelly eficient technique capable of scanning the solutions space and find results close to the optimum solutions