13 resultados para Photoacoustic Spectroscopy

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used near ultraviolet photoacoustic spectroscopy (PAS) over the wavelength range 240-320 nm to investigate the complex formed between the homodimeric bothropstoxin-I, a lysine-49-phospholipase A(2) from the venom of Bothrops jararacussu (BthTx-I), with the anionic amphiphile sodium dodecyl sulfate (SDS). At molar ratios > 10, the complex developed a significant light scatter, accompanied by a decrease in the intrinsic tryptophan fluorescence intensity emission (ITFE) of the protein, and an increase in the near UV-PAS signal. Difference PAS spectroscopy at SDS/BthTx-I ratios < 8 were limited to the region 280-290 nm, suggesting initial SDS binding to the tryptophan 77 located at the dimer interface. At SDS/BthTx-I ratios > 10, the intensity between 260 and 320 nm increases demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interaction. PAS signal phase changes at wavelengths specific for each aromatic residue suggest that the Trp77 becomes more buried on SDS binding, and that protein structural changes and dehydration may alter the microenvironments of Tyr and Phe residues. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scatter is significant. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper concerns the use of photoacoustic spectroscopy (PAS) to study the presence of aromatic amino acid in proteins. We examined the aromatic amino acids in six proteins with well-known structures using absorption spectra of near ultraviolet PAS over the wavelength range 240-320 nm. The fundamental understanding of the physical and chemical properties that govern the absorption of light and a subsequent release of heat to generate a transient pressure wave was used to test the concept of monitoring aromatic amino acids with this method. Second derivative spectroscopy in the ultraviolet region of proteins was also used to study the regions surrounding the aromatics and the percentage area in each band was related in order to determine the contribution in function of the respective molar extinction coefficients for each residue. Further investigation was conducted into the interaction between sodium dodecyl sulphate (SDS) and bothropstoxin-I (BthTx-I), with the purpose of identifying the aromatics that participate in the interaction. The clear changes in the second derivative and curve-fitting procedures suggest that initial SDS binding to the tryptophan located in the dimer interface and above 10 SDS an increased intensity between 260 and 320 nm, demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interactions. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scattering is significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoacoustic spectroscopy was used to determine the critical distance for electron transfer from porphyrin to quinone molecules randomly dispersed in a polymeric matrix. An enhancement of the porphyrin signal was observed as the quinone concentration was increased. The data was analyzed according to the Perrin model [1] and it was found that the electron transfer occurred if the prophyrin-quinone distance was less than 33 Angstrom. To confirm the validity of the method, the fluorescence quenching was also measured for the samples. In this case, the same critical distance was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined the binding processes of ethidium bromide interacting with calf thymus DNA using photoacoustic spectroscopy. These binding processes are generally investigated by a combination of absorption or fluorescence spectroscopies with hydrodynamic techniques. The employment of photoacoustic spectroscopy for the DNA-ethidium bromide system identified two binding manners for the dye. The presence of two isosbestic points (522 and 498 nm) during DNA titration was evidence of these binding modes. Analysis of the photoacoustic amplitude signal data was performed using the McGhee-von Hippel excluded site model. The binding constant obtained was 3.4 x 10(8) M(bp)(-1), and the number of base pairs excluded to another dye molecule by each bound dye molecule (n) was 2. A DNA drug dissociation process was applied using sodium dodecyl sulfate to elucidate the existence of a second and weaker binding mode. The dissociation constant determined was 0.43 mM, whose inverse value was less than the previously obtained binding constant, demonstrating the existence of the weaker binding mode. The calculated binding constant was adjusted by considering the dissociation constant and its new value was 1.2 x 10(9) M(bp)(-1) and the number of excluded sites was 2.6. Using the photoacoustic technique it is also possible to obtain results regarding the dependence of the quantum yield of the dye on its binding mode. While intercalated between two adjacent base pairs the quantum yield found was 0.87 and when associated with an external site it was 0.04. These results reinforce the presence of these two binding processes and show that photoacoustic spectroscopy is more extensive than commonly applied spectroscopies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier Transform Infrared Photoacoustic Spectroscopy was used to determine the mid-infrared vibrational modes of biodiesel and vegetable oils. Our results indicate that this method can contribute significantly to the biodiesel wash process during the sample preparation. Besides, by analyzing the spectra of vegetable oils used to fry snacks we could to monitor the degradation in function of the fried time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A espectroscopia fotoacústica obtém informações sobre amplitude e fase, da resposta de um sistema submetido a excitação por luz. Este artigo apresenta estudos do ângulo de fase no processo de transfereência de elétrons entre octaetilporfirina (OEP) e derivados de quinona ambos dispersos em uma matriz polimérica. Observou-se uma tendência no comportamento da fase para valores menores na região espectral próximo de 620 nm. Enquanto que para comprimentos de onda menores este efeito não foi apresentado. Estas medidas sugerem que a transferência de elétrons para o aceitador ocorreu com a participação do estado singleto excitado da octaetilporfirina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with Europium (III) acetylacetonate [Eu(acac)(3)], have been studied by photoacoustic spectroscopy (PAS) and photoluminescent (PL) spectroscopy. Emission and excitation spectra, excited state decay times, and quantum efficiency have been evaluated as well. PAS studies evidenced chemical interactions between the Europium complex and the PC/PMMA blend, which presented typical percolation threshold behavior regarding the Eu3+ content. PL spectra evidenced the photoluminescence of the Eu3+ incorporated into the blend. Photoluminescence property enhancement was observed for the composite in comparison with the precursor compound. Optimized emission quantum efficiency was observed for the 60/40 blend doped with 2% and 4% Europium (III) acetylacetonate. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intension of this paper was to review and discuss some of the current quantitative analytical procedures which are used for quality control of pharmaceutical products. The selected papers were organized according to the analytical technique employed. Several techniques like ultraviolet/visible spectrophotometry, fluorimetry, titrimetry, electroanalytical techniques, chromatographic methods (thin-layer chromatography, gas chromatography and high-performance liquid chromatography), capillary electrophoresis and vibrational spectroscopies are the main techniques that have been used for the quantitative analysis of pharmaceutical compounds. In conclusion, although simple techniques such as UV/VIS spectrophotometry and TLC are still extensively employed, HPLC is the most popular instrumental technique used for the analysis of pharmaceuticals. Besides, a review of recent works in the area of pharmaceutical analysis showed a trend in the application of techniques increasingly rapid such as ultra performance liquid chromatography and the use of sensitive and specific detectors as mass spectrometers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among remarkable discoveries concerning propolis, such as antifungal, antiviral, and antioxidant activities, its anti-inflammatory, and mainly its antibacterial, properties deserve special attention when skin wound healing is concerned. Based on this and knowing the distinctive performance of bacterial (BC) membranes on wound healing, in this work it is proposed to demonstrate the potent antimicrobial activity and wound healing properties of a novel propolis containing biocellulose membrane. The obtained propolis/BC membrane was able to adsorb propolis not only on the surface, but also in its interstices demonstrated by scanning electron microscopy, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and thermogravidimetric assays. Additionally, the polyphenolic compounds determination and the prominent antibacterial activity in the membrane are demonstrated to be dose dependent, supporting the possibility of obtaining propolis/BC membranes at the desired concentrations, taking into consideration its application and its skin residence time. Finally, it could be suggested that propolis/BC membrane may favor tissue repair in less time and more effectively in contaminated wounds. © 2013 Hernane da Silva Barud et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Under physiological conditions B-form DNA is an exceedingly stable structure. However, experimental evidences obtained through nuclear magnetic resonance and fluorescence anisotropy suggest that the structure of the double helix fluctuates substantially. We describe photoacoustic phase modulation frequency measurements of ethidium bromide (Eb) with calf thymus, DNA. As in fluorescence phase modulation measurements, we used an intercalating dye as a probe; however, we monitored the triplet excited state lifetime at different ionic strengths. The triplet lifetime of Eb varied from about 0.30 ms, with no DNA present, to 20 ms, (at a DNA:Eb molar ratio of 5). With salt titration, this value falls, to about 2.0 ms. This result suggests, a strong coupling between the phenantridinium ring of the ethidium and the base pairs because of the stacking movement of the DNA molecule under salt effect. This, effect may be understood considering DNA as a polyelectrolyte. The counterions, in the solution shield the phosphate groups, reducing the electrostatic repulsion force between them, hence compacting the DNA molecule. The results from Fourier transform infrared demonstrated two important bands: 3187 cm(-1) corresponding to the symmetric stretching of the NH group of the bases, and 1225 cm(-1) corresponding to the asymmetric stretching of phosphate groups shifted toward higher wavenumbers, suggesting a proximity between the intercalant and base pairs and a modification of the DNA backbone state, both induced by salt accretion.