74 resultados para Phase Transformation

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the phase transformation during the preparation of Ni-25Nb, Ni-25Ta, Ni-20Nb-5Ta and Ni-15Nb-10Ta (at-%) powders by high-energy ball milling from elemental powders. The milling process was performed in a planetary ball milling using stainless steel balls and vials, rotary speed of 300rpm, and a ball-to-powder of 10:1. To minimize contamination and spontaneous ignition the powders were handled under argon atmosphere in a glove box. The milled powders were characterized by means of X-ray diffraction techniques. Results indicated that the Ni atoms were preferentially dissolved into the Nb (and/or Ta) lattice at the initial milling times, which contributed to change the relative intensity on the diffraction peaks. After the dissolution of Nb (and/or Ta) into the Ni lattice, the Ni peaks were moved to the direction of lower diffraction angles in Ni-25Nb, Ni-25Ta, Ni-20Nb-5Ta, Ni-15Nb-10Ta powders, indicating that the mechanical alloying was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most studied ceramic superconductors for application has been, undoubtedly, Bi2Sr2CaCu2O8+delta. Although being a multiphasic material, it has proved to have great advantages compared to other ceramic systems. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature call distinguish among different atomic jumps that occur inside the various phases or at different local ordering. In this paper, mechanical loss spectra of Bi2Sr2CaCu2O8+delta bar shaped samples, made by a conventional method, have been measured between 80 and 600 K, using a torsion pendulum operating in frequencies below 50 Hz, for samples annealed in vacuum up to 600 K. Possible relaxation mechanisms are proposed to explain the origin of the mechanical-loss peaks observed 300 and 500 K. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization process of lead titanate (PT) prepared using the polymeric precursor method was investigated using X-ray diffractometry, Raman spectroscopy, electron microscopy, and X-ray absorption spectroscopy techniques. The results showed that amorphous PT was formed by an O-Ti-O structure composed of fivefold and sixfold oxygen-coordinated titanium. The local structure of the amorphous PT phase was similar to that of the cubic PT phase, i.e., similar coordination number and similar bond lengths, leading to a topotactic-like transformation during the phase transformation from amorphous to cubic perovskite PT. Because of the low crystallization temperature, every transformation observed during the crystallization process was associated with a short-range rearrangement process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bottom-up methods to obtain nanocrystals usually result in metastable phases, even in processes carried out at room temperature or under soft annealing conditions. However, stable phases, often associated with anisotropic shapes, are obtained in only a few special cases. In this paper we report on the synthesis of two well-studied oxides-titanium and zirconium oxide-in the nanometric range, by a novel route based on the decomposition of peroxide complexes of the two metals under hydrothermal soft conditions, obtaining metastable and stable phases in both cases through transformation. High-resolution transmission electron microscopy analysis reveals the existence of typical defects relating to growth by the oriented attachment mechanism in the stable crystals. The results suggest that the mechanism is associated to the phase transformation of these structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of silver additions on the structure and phase transformation of the Cu-13 wt % Al alloy was studied by differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive analysis of X-rays. The results indicate that the presence of silver modifies the phase-stability field, the transition temperature and the structure of the alloy. These effects are more pronounced for silver concentrations up to 8 wt %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase evolution of lead titanate processed by the polymeric precursor method was investigated by thermal analysis, X-ray diffraction, and high-resolution transmission electron microscopy. The results showed that the cubic perovskite PbTiO3 (PT) phase is formed from an inorganic amorphous precursor at a temperature of 444 °C. A gradual transition from cubic to tetragonal perovskite PT was observed with the increase of calcination time at this temperature. HRTEM results showed that the cubic PT particles have a size of around 5 nm. The identification of cubic PT as an intermediate phase supports the hypothesis that the chemical homogeneity was kept at the molecular level during the synthesis process, with no cation segregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Disc-shaped zirconia specimens (Ø: 15mm, thickness: 1.2mm) (N=32) were submitted to one of the air-particle abrasion protocols (n=8 per group): (a) 50μm Al2O3 particles, (b) 110μm Al2O3 particles coated with silica (Rocatec Plus), (c) 30μm Al2O3 particles coated with silica (CoJet Sand) for 20s at 2.8bar pressure. Control group received no air-abrasion. All specimens were initially cyclic loaded (×20,000, 50N, 1Hz) in water at 37°C and then subjected to biaxial flexural strength testing where the conditioned surface was under tension. Zirconia surfaces were characterized and roughness was measured with 3D surface profilometer. Phase transformation from tetragonal to monoclinic was determined by Raman spectroscopy. The relative amount of transformed monoclinic zirconia (FM) and transformed zone depth (TZD) were measured using XRD. The data (MPa) were analyzed using ANOVA, Tukey's tests and Weibull modulus (m) were calculated for each group (95% CI). The biaxial flexural strength (MPa) of CoJet treated group (1266.3±158A) was not significantly different than that of Rocatec Plus group (1179±216.4A,B) but was significantly higher than the other groups (Control: 942.3±74.6C; 50μm Al2O3: 915.2±185.7B,C). Weibull modulus was higher for control (m=13.79) than those of other groups (m=4.95, m=5.64, m=9.13 for group a, b and c, respectively). Surface roughness (Ra) was the highest with 50μm Al2O3 (0.261μm) than those of other groups (0.15-0.195μm). After all air-abrasion protocols, FM increased (15.02%-19.25%) compared to control group (11.12%). TZD also showed increase after air-abrasion protocols (0.83-1.07μm) compared to control group (0.59μm). Air-abrasion protocols increased the roughness and monoclinic phase but in turn abrasion with 30μm Al2O3 particles coated with silica has increased the biaxial flexural strength of the tested zirconia. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Materials and Methods: Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al2O3 particles (Rocatec Soft); 2) 110-μm silica-modified Al2O3 particles (Rocatec Plus); and 3) 120-μm Al2O3 particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Results: Grinding significantly decreased the BFS of the non-heat-treated groups (p < 0.01). Within the ground groups, the previous heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p < 0.01). For the non-heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al2O3 particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic zirconia content than the as-sintered and ground surfaces, which exhibited similar content. Conclusion: Even under irrigation, grinding compromised the Y-TZP ceramic strength. The sintering of the veneering porcelain rendered the previous heat treatment recommended by the manufacturer unnecessary. Airborneparticle abrasion influenced the strength of heat-treated zirconia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Materials and Methods: Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al2O3 particles (Rocatec Soft); 2) 110-μm silica-modified Al2O3 particles (Rocatec Plus); and 3) 120-μm Al2O3 particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Results: Grinding significantly decreased the BFS of the non-heat-treated groups (p < 0.01). Within the ground groups, the previous heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p < 0.01). For the non-heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al2O3 particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic zirconia content than the as-sintered and ground surfaces, which exhibited similar content. Conclusion: Even under irrigation, grinding compromised the Y-TZP ceramic strength. The sintering of the veneering porcelain rendered the previous heat treatment recommended by the manufacturer unnecessary. Airborneparticle abrasion influenced the strength of heat-treated zirconia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem Because airborne-particle abrasion is an efficient method of improving the bond at the zirconia-cement interface, understanding its effect on the strength of yttria-stabilized tetragonal zirconia polycrystal is important. Purpose The purpose of this study was to evaluate the effect of the particle size used for airborne-particle abrasion on the flexural strength and phase transformation of a commercially available yttria-stabilized tetragonal zirconia polycrystal ceramic. Material and Methods For both flexural strength (20.0 × 4.0 × 1.2 mm) (n=14) and phase transformation (14.0-mm diameter × 1.3-mm thickness) (n=4), the zirconia specimens were made from Lava, and their surfaces were treated in the following ways: as-sintered (control); with 50-μm aluminum oxide (Al2O3) particles; with 120-μm Al2O3 particles; with 250-μm Al2O3 particles; with 30-μm silica-modified Al2O3 particles (Cojet Sand); with 120-μm Al2O3 particles, followed by 110-μm silica-modified Al2O3 particles (Rocatec Plus); and with Rocatec Plus. The phase transformation (%) was assessed by x-ray diffraction analysis. The 3-point flexural strength test was conducted in artificial saliva at 37°C in a mechanical testing machine. The data were analyzed by 1-way ANOVA and the Tukey honestly significant difference post hoc test (α=.05). Results Except for the Cojet Sand group, which exhibited statistically similar flexural strength to that of the as-sintered group and for the group abraded with 250-μm Al2O3 particles, which presented the lowest strength, airborne-particle abrasion with the other particle sizes provided the highest values, with no significant difference among them. The as-sintered specimens presented no monoclinic phase. The groups abraded with smaller particles (30 μm and 50 μm) and those treated with the larger ones (110 μm and/or 120 μm particles and 250 μm) exhibited percentages of monoclinic phase that varied from 4% to 5% and from 8.7% to 10%. Conclusions Except for abrasion with Cojet Sand, depending on the particle size, zirconia exhibited an increase or a decrease in its flexural strength. Airborne-particle abrasion promoted phase transformation (tetragonal to monoclinic), and the percentage of monoclinic phase varied according to the particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plasma electrolytic oxidation (PEO) is a coating procedure that utilises anodic oxidation in aqueous electrolytes above the dielectric breakdown voltage to produce oxide coatings that have specific properties. These conditions facilitate oxide formation under localised high temperatures and pressures that originate from short-lived microdischarges at sites over the metal surface and have fast oxide volume expansion. Anodic ZrO2 films were prepared by subjecting metallic zirconium to PEO in acid solutions (H2C 2O4 and H3PO4) using a galvanostatic DC regime. The ZrO2 microstructure was investigated in films that were prepared at different charge densities. During the anodic breakdown, an important change in the amplitude of the voltage oscillations at a specific charge density was observed (i.e., the transition charge density (Q T)). We verified that this transition charge is a monotonic function of both the current density and temperature applied during the anodisation, which indicated that Q T is an intrinsic response of this system. The oxide morphology and microstructure were characterised using SEM and X-ray diffraction experiments (XRD) techniques. X-ray diffraction analysis revealed that the change in voltage oscillation was correlated with oxide microstructure changes during the breakdown process. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)