53 resultados para Parallel computing. Multilayer perceptron. OpenMP

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others nature-inspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Geociências e Meio Ambiente - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an artificial neural network (ANN) based methodology is proposed for (a) solving the basic load flow, (b) solving the load flow considering the reactive power limits of generation (PV) buses, (c) determining a good quality load flow starting point for ill-conditioned systems, and (d) computing static external equivalent circuits. An analysis of the input data required as well as the ANN architecture is presented. A multilayer perceptron trained with the Levenberg-Marquardt second order method is used. The proposed methodology was tested with the IEEE 30- and 57-bus, and an ill-conditioned 11-bus system. Normal operating conditions (base case) and several contingency situations including different load and generation scenarios have been considered. Simulation results show the excellent performance of the ANN for solving problems (a)-(d). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simulated annealing optimization technique has been successfully applied to a number of electrical engineering problems, including transmission system expansion planning. The method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Moreover, it has the ability to provide solutions arbitrarily close to an optimum (i.e. it is asymptotically convergent) as the cooling process slows down. The drawback of the approach is the computational burden: finding optimal solutions may be extremely expensive in some cases. This paper presents a Parallel Simulated Annealing, PSA, algorithm for solving the long term transmission network expansion planning problem. A strategy that does not affect the basic convergence properties of the Sequential Simulated Annealing algorithm have been implementeded and tested. The paper investigates the conditions under which the parallel algorithm is most efficient. The parallel implementations have been tested on three example networks: a small 6-bus network, and two complex real-life networks. Excellent results are reported in the test section of the paper: in addition to reductions in computing times, the Parallel Simulated Annealing algorithm proposed in the paper has shown significant improvements in solution quality for the largest of the test networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing amount of sequences stored in genomic databases has become unfeasible to the sequential analysis. Then, the parallel computing brought its power to the Bioinformatics through parallel algorithms to align and analyze the sequences, providing improvements mainly in the running time of these algorithms. In many situations, the parallel strategy contributes to reducing the computational complexity of the big problems. This work shows some results obtained by an implementation of a parallel score estimating technique for the score matrix calculation stage, which is the first stage of a progressive multiple sequence alignment. The performance and quality of the parallel score estimating are compared with the results of a dynamic programming approach also implemented in parallel. This comparison shows a significant reduction of running time. Moreover, the quality of the final alignment, using the new strategy, is analyzed and compared with the quality of the approach with dynamic programming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sao Paulo State Research Foundation-FAPESP

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes an application of a multilayer perceptron neural network technique to correct dome emission effects on longwave atmospheric radiation measurements carried out using an Eppley Precision Infrared Radiometer (PIR) pyrgeometer. It is shown that approximately 7-month-long measurements of dome and case temperatures and meteorological variables available in regular surface stations (global solar radiation, air temperature, and air relative humidity) are enough to train the neural network algorithm and correct the observed longwave radiation for dome temperature effects in surface stations with climates similar to that of the city of São Paulo, Brazil. The network was trained using data from 15 October 2003 to 7 January 2004 and verified using data, not present during the network-training period, from 8 January to 30 April 2004. The longwave radiation values generated by the neural network technique were very similar to the values obtained by Fairall et al., assumed here as the reference approach to correct dome emission effects in PIR pyrgeometers. Compared to the empirical approach the neural network technique is less limited to sensor type and time of day (allows nighttime corrections).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application process of fluid fertilizers through variable rates implemented by classical techniques with feedback and conventional equipments can be inefficient or unstable. This paper proposes an open-loop control system based on artificial neural network of the type multilayer perceptron for the identification and control of the fertilizer flow rate. The network training is made by the algorithm of Levenberg-Marquardt with training data obtained from measurements. Preliminary results indicate a fast, stable and low cost control system for precision fanning. Copyright (C) 2000 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multilayer perceptron network has become one of the most used in the solution of a wide variety of problems. The training process is based on the supervised method where the inputs are presented to the neural network and the output is compared with a desired value. However, the algorithm presents convergence problems when the desired output of the network has small slope in the discrete time samples or the output is a quasi-constant value. The proposal of this paper is presenting an alternative approach to solve this convergence problem with a pre-conditioning method of the desired output data set before the training process and a post-conditioning when the generalization results are obtained. Simulations results are presented in order to validate the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several papers on pruning methods in the artificial neural networks area. However, with rare exceptions, none of them presents an appropriate statistical evaluation of such methods. In this article, we proved statistically the ability of some methods to reduce the number of neurons of the hidden layer of a multilayer perceptron neural network (MLP), and to maintain the same landing of classification error of the initial net. They are evaluated seven pruning methods. The experimental investigation was accomplished on five groups of generated data and in two groups of real data. Three variables were accompanied in the study: apparent classification error rate in the test group (REA); number of hidden neurons, obtained after the application of the pruning method; and number of training/retraining epochs, to evaluate the computational effort. The non-parametric Friedman's test was used to do the statistical analysis.