37 resultados para Paper monitoring

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The motility of Spirillum volutans was used for monitoring the toxicity of effluents of a cellulose and paper industry. Results indicated that there was no correlation between organic content and the toxic effects of the residues in the effluents. The effluents from the chlorination step and from the sludge ponds presented the highest toxicity. on the other hand, the final effluent from the biological treatment basin had no toxic agent. This bioassay showed to be a simple and reliable technique that can be used for adequately monitoring the toxicity of effluents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, an (X) over bar chart is used to control the process mean and an R chart is used to control the process variance. However, these charts are not sensitive to small changes in the process parameters. The adaptive ($) over bar and R charts might be considered if the aim is to detect small disturbances. Due to the statistical character of the joint (X) over bar and R charts with fixed or adaptive parameters, they are not reliable in identifing the nature of the disturbance, whether it is one that shifts the process mean, increases the process variance, or leads to a combination of both effects. In practice, the speed with which the control charts detect process changes may be more important than their ability in identifying the nature of the change. Under these circumstances, it seems to be advantageous to consider a single chart, based on only one statistic, to simultaneously monitor the process mean and variance. In this paper, we propose the adaptive non-central chi-square statistic chart. This new chart is more effective than the adaptive (X) over bar and R charts in detecting disturbances that shift the process mean, increase the process variance, or lead to a combination of both effects. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a non-model based technique to detect and locate structural damage with the use of artificial neural networks. This method utilizes high frequency structural excitation (typically greater than 30 kHz) through a surface-bonded piezoelectric sensor/actuator to detect changes in structural point impedance due to the presence of damage. Two sets of artificial neural networks were developed in order to detect, locate and characterize structural damage by examining changes in the measured impedance curves. A simulation beam model was developed to verify the proposed method. An experiment was successfully performed in detecting damage on a 4-bay structure with bolted-joints, where the bolts were progressively released.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Throughout late 1998 and early 1999, the International GLONASS Experiment (IGEX) has delivered the first comprehensive inter-continental dual frequency GLONASS data set. This experiment represents the first opportunity to assess how a second global satellite positioning system could complement existing CPS geodetic infrastructure. Based on analysis of a three station network of IGEX stations from Southern Hemisphere IGEX stations, this paper discusses the internal and external precision of long baseline GPS, GLONASS and combined GPS/GLONASS solutions, and the possible contribution of GLONASS to future regional-scale geodetic work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, an (X) over bar -chart is used to control the process mean and an R-chart to control the process variance. However, these charts are not sensitive to small changes in process parameters. A good alternative to these charts is the exponentially weighted moving average (EWMA) control chart for controlling the process mean and variability, which is very effective in detecting small process disturbances. In this paper, we propose a single chart that is based on the non-central chi-square statistic, which is more effective than the joint (X) over bar and R charts in detecting assignable cause(s) that change the process mean and/or increase variability. It is also shown that the EWMA control chart based on a non-central chi-square statistic is more effective in detecting both increases and decreases in mean and/or variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an urban traffic control system which aims at contributing to a more efficient traffic management system in the cities of Brazil. It uses fuzzy sets, case-based reasoning, and genetic algorithms to handle dynamic and unpredictable traffic scenarios, as well as uncertain, incomplete, and inconsistent information. The system is composed by one supervisor and several controller agents, which cooperate with each other to improve the system's results through Artificial Intelligence Techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the application of a damage detection methodology to monitor the location and extent of partial structural damage. The methodology combines, in an iterative way, the model updating technique based on frequency response functions (FRF) with monitoring data aiming at identifying the damage area of the structure. After the updating procedure reaches a good correlation between the models, it compares the parameters of the damage structure with those of the undamaged one to find the deteriorated area. The influence of the FEM mesh size on the evaluation of the extent of the damage has also been discussed. The methodology is applied using real experimental data from a spatial frame structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational program called GIS_EM (Geographic Information System for Environmental Monitoring), a software devised to manage geographic information for monitoring soil, surface, and ground water, developed for use in the Health, Safety, and Environment Division of Paulinia Refinery is presented. This program enables registering and management of alphanumeric information pertaining to specific themes such as drilling performed for sample collection and for installation of monitoring wells, geophysical and other tests, results of chemical analyses of soil, surface, and groundwater, as well as reference values providing orientation for soil and water quality, such as EPA, Dutch List, etc. Management of such themes is performed by means of alphanumeric search tools, with specific filters and, in the case of spatial search, through the selection of spatial elements (themes) in map view. Documents existing in digital form, such as reports, photos, maps, may be registered and managed in the network environment. As the system centralizes information generated upon environmental investigations, it expedites access to and search of documents produced and stored in the network environment, minimizing search time and the need to file printed documents. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).