378 resultados para Pantanal basin
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A pioneer GPR - Ground Penetrating Radar - survey was carried out in the Pantanal of Mato Grosso State, westcentral region of Brazil. Fieldwork acquisitions were carried out in February/2001 and August/2002 in order to understand avulsion processes that are occurring within the Taquari alluvial megafan. The main subjects were to map channel, crevasses and floodplain morphology, as well as active sedimentary bedforms. Many GPR profiles were surveyed in the medium and lower Taquari River course. Subaqueous megaripples and exposed sand bars inside the Taquari channel were identified in the medium fan area. Similar features were observed in the lower fan channels, where there are also many crevasses in the marginal levees. During the flooding seasons the flow splays out in the floodplain where new distributary channels are being formed. As shown by GPR data, in the lower fan the Taquari channel is topographically higher than the adjacent floodplain, situation in which avulsion is a natural process of river course shifting. The lack of information about river morphology and dynamics is a major strain to better understand the sediment transport and the avulsion processes in the Taquari megafan. In this context, the GPR data obtained in wet and dry seasons, integrated to sedimentological information, have been very important to characterize the fluvial dynamics and the avulsion phenomena.
Resumo:
A idade e o crescimento do pintado Pseudoplatystoma corruscans foram estudados durante o período de maio de 1994 a maio de 1995. O comprimento-padrão variou de 52 a 145 cm e o peso total, de 1,3 a 41 kg. As relações biométricas entre comprimento-padrão (Ls) e comprimento total (Ltotal) e entre peso total (Wt) e comprimento-padrão (Ls) foram obtidas, sendo, respectivamente: Ltotal = 3,296 + 1,069 * Ls e Wt = 0,00624 * Ls3,134. O fator de condição, calculado mensalmente, sugere que a desova ocorreu entre os meses de fevereiro e março. A idade foi estimada pela contagem de anéis de crescimento presentes nos raios modificados (esporão) das nadadeiras peitorais, detectando 10 classes etárias. A distância média do último anel até a borda do esporão sugere que o período de menor crescimento ocorreu entre julho e setembro (seca). A equação de von Bertalaffy que descreve o crescimento do pintado é: Lt = 183 * [1 - exp - 0,085 * (t + 3,274)]. A mortalidade total obtida foi Z = 0,24 ano-1 e a mortalidade natural M = 0,20 ano-1. Com o presente nível de explotação, F = Z - M = 0,04 ano-1, conclui-se que o estoque do pintado ainda não estava sobrexplotado na bacia do rio Cuiabá, Pantanal Matogrossense, na época em que foi realizado o estudo.
Resumo:
O recurso pesqueiro da bacia do rio Cuiabá, um dos mais importantes tributários da bacia do Alto Paraguai, formadora do Pantanal, foi estudado a partir dos dados de desembarque de pescado obtidos no Mercado do Porto de Cuiabá, Mato Grosso, Brasil. São descritas a composição e procedência das capturas para os anos de 2000 e 2001. O rio Cuiabá é a fonte dominante de pescado para a cidade de Cuiabá, mas uma parte do pescado comercializado localmente é oriunda do rio Paraguai. Além disso, atualmente o pescado vem de regiões mais distantes da zona urbana. Constatou-se que a pesca incide basicamente sobre espécies migradoras. As principais espécies capturadas foram os pimelodídeos pintado -Pseudoplatystoma corruscans, cachara -Pseudoplatystoma fasciatum e jaú -Paulicea luetkeni e os caraciformes pacu -Piaractus mesopotamicus, piraputanga -Brycon microlepis, piavuçu -Leporinus macrocephalus e dourado -Salminus brasiliensis. Os grandes bagres (Pimelodidae) foram os responsáveis por 70% do pescado desembarcado no período de estudo, dentre os quais o pintado foi a espécie mais capturada. Os dados indicam que as capturas atuais estão bem aquém daquelas registradas no início da década de 80. Além disso, apesar do número e composição de espécies capturadas serem similares àqueles da década de 80, a distribuição da abundância mudou. Atualmente a pesca captura mais espécies carnívoras do que espécies de níveis tróficos inferiores. Estes achados não podem ser creditados somente a sobrepesca, mas parecem resultar de uma complexa interação entre degradação ambiental, mudanças na preferência de mercado e medidas legais restritivas à pesca.
Resumo:
Fork length measurements of individuals of Brycon microlepis landed and commercialized at the Porto Market in Cuiabá, MT, from May-October 1996 to May-October 1997 were used to estimate growth and mortality parameters for this species. The average estimated populational parameters were: L∞_ = 705 mm, k = 0.275 year -1, C = 0.775, WP = 0.465, Lc = 164 mm, M = 0.585 year -1, Z = 0.822 year -1, with F = 0.237 year -1. Yield per recruit analysis suggests that the stock is not yet overexploited.
Resumo:
The marsh deer is the largest neotropical cervid with morphological and ecological adaptations to wetlands and riparian habitats. Historically, this now endangered species occupied habitats along the major river basins in South America, ranging from southern Amazonia into northern Argentina to the Parana river delta. This particularly close association with wetlands makes marsh deer an excellent species for studying the effects of Pleistocene climatic changes on their demographic and phylogeographic patterns. We examined mitochondrial DNA variation in 127 marsh deer from 4 areas distributed throughout the Rio de]a Plata basin. We found 17 haplotypes in marsh deer from Brazil, Bolivia and Argentina that differed by 1-8 substitutions in a 601 bp fragment of mitochondrial control region sequence, and 486 bp of cytochrome b revealed only 3 variable sites that defined 4 haplotypes. Phylogeny and distribution of control region haplotypes suggest that populations close to the Pantanal area in central Brazil underwent a rapid population expansion and that this occurred approximately 28,000-25,000 years BP. Paleoclimatic data from this period suggests that there was a dramatic increase for precipitation in the medium latitudes in South America and these conditions may have fostered marsh deer's population growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The distribution and physiological condition of 116 Caiman crocodilus yacare was assessed over one year in the Southern Pantanal. Body mass and intermediary plasma metabolites were measured at three different time periods, representing large differences in the abundance of surface water. During the wet season the study site was completely submerged under water and C. c. yacare were distributed evenly throughout. High levels of [glucose] and [triglyceride] in the plasma indicated regular feeding. As the dry season progressed C. c. yacare became increasingly crowded around the remaining ponds. They showed a reduction in plasma [glucose] and [triglyceride], and an increase in plasma [beta-hydroxy-butyrate], signifying that they were feeding less and utilising fat reserves. At this sampling period, similar to 40% of the male C. c. yacare that were > 10 years old inhabited dry grassland and did not have access to water. These animals were significantly lighter than males of a similar length that had immediate water access, and plasma [uric acid] indicated that they had not fed for a long time and were metabolising tissue proteins. Essentially, the adult male C. c. yacare that inhabited dry grassland were in a state of energy deficiency. This was so severe in some animals that recovery seemed unlikely. The study suggests that fluctuations in the abundance of surface ground water may influence the size and structure of the C. c. yacare population in the Pantanal.
Resumo:
The Pantanal is a tectonic depression located at the left margin of the Upper Paraguay River. The Paraguay is the trunk river of an alluvial depositional tract composed by several large marginal alluvial fans, the Taquari fan being the largest one. The present landscape is a complex tropical wetland characterized by month-long floods every year, with geomorphic features derived from the present conditions and others inherited from successive Pleistocene and Holocene climates. Some areas containing ponds are landscape relicts generated by eolian deflation during the Last Glacial Maximum. Many ponds, closed depressions isolated from the superficial waters by vegetated crescent ridges of fine sands, were interpreted as salt pans bordered by lunette sand dunes. Initiation of the modern wetland has occurred during the Pleistocene/Holocene transition, with the change to a more humid climate and the individualization of lacustrine systems. Active tectonics has been playing an important role in the development of the Pantanal landscape. Nowadays, the Paraguay River meanders in a large flood plain with extensive swamp surfaces, being structurally constrained by faults in the west border of the basin. Sedimentation within the Pantanal wetland is also affected by tectonic activity, especially along faults associated with the Transbrasiliano Lineament. (C) 2003 Elsevier B.V. Ltd and INQUA. All rights reserved.
Resumo:
The Pantanal wetland is located in a tectonically active interior sedimentary basin in west-central Brazil. The south-flowing Paraguay River is the trunk-river of an alluvial constructional landform comprising several large alluvial fans, the largest one of which is the Taquari megafan. The Taquari River flows in two distinct geomorphologic zones within the megafan. Entrenched on sediments of Pleistocene fan lobes, the Taquari River flows in a 3 to 5 km wide meander belt in the upper fan, where avulsion is hindered by entrenchment. Downstream of the intersection point, stream discharge progressively decreases and the Taquari River becomes narrow and shallow toward the Paraguay River plain. Within the distributary fan lobe, the channel-levee sandy complex is topographically higher than the adjacent floodplains and avulsion is a natural consequence of crevasses in the natural levees. Many channel avulsions have occurred during the last decades and documented cases show that significant channel changes may take place in a few years. Beginning with crevassing in 1988 and ending with the abandonment of the former channel in 1998, the river completely changed course in the lower fan. Presently, a major avulsion is occurring in the upper portion of the growing fan lobe, where many crevasses have appeared in the natural levees with associated splays onto the floodbasin. New anastomosed channels have formed north of the Taquari River, but downstream of them the flow is unconfined and the water spreads into natural floodbasins. This avulsion is still in process and allows observation of channel evolution, the geomorphic features produced, the sedimentary processes involved, and resulting effects. If the new channels do not rejoin the main channel, the river mouth may abandon its present master channel and shift to a position a hundred kilometers north from its present position. A large volume of sediment has been transferred to the floodbasin, with progradation of crevasse splay deposits over fine overbank sediments. Many geomorphic features, recognizable in satellite and radar images, clearly show that avulsion has occurred many limes before in the Taquari River. Avulsion belt deposits and former diverted channels testify to ancient avulsion events within the fan lobe and show that progradation of splays onto the floodbasin is the most important infilling process within the Taquari distributary fan lobe. The avulsion process in the lower Taquari River has accelerated in the last 30 years, along with the magnitude of flooding. Pasture and intensive agriculture in the catchment area has increased the sediment supply to the wetland, but larger floods are also a consequence of higher rainfall since 1973. Avulsion and floods have been a cause of great concern among the local population and landowners. Before human intervention in attempting to control floods, however, a better understanding of the avulsive river system is needed, especially because a major navigation project including the channelization of the Paraguay River was recently proposed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Nabileque fluvial fan is a Quaternary depositional system located along the southwestern border of the Pantanal, covering an area of approximately 9,100 km 2. It is a peculiar alluvial system because it is not associated with inflow from adjacent plateaus. The Nabileque megafan is formed by the Paraguay River at the exit of the Pantanal wetland, coalescing with the Pilcomayo megafan of the Chaco basin. A geomorphological zonation analysis was performed making use of remote sensing data with field verification. Most of the area is a vast alluvial plain made of Pleistocene deposits, whose surface is marked by the presence of an intricate network of distributary paleochannels. Areas blanketed by Pleistocene deposits are dissected by erosional streams and subject to frequent flooding events. The Paraguay River flows in a meander belt constrained by NE fractures associated with the Transbrasiliano Lineament, but deflects towards the SSE after the Negro River confluence composing the system's peripheral drainage. An abandoned meander belt is preserved within a remarkable N-S incised-valley that is interpreted as the ancient Paraguay River course. Processes of avulsion and river capture are suggested to explain the observed changes of the river course. The Nabileque River is an underfit stream within the incised-valley, cutting paleomeanders and point bars of the previous Paraguay River course.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)