24 resultados para Pancreatic diseases

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

These data suggest that an improved understanding of the relationship between high dietary carbohydrate and the rate of lipid peroxidation may give some insight into possible treatment modalities for pancreatic damages and may shed light on molecular mechanisms underlying certain pathological processes. High dietary carbohydrate lesions are age related and induced alterations on ceruloplasmin, phospholipids, total proteins, copper and zinc serum levels. Significantly increased serum and pancreatic amylase, and lipoperoxide determinations were observed in 20 month old rats. Cu-Zn superoxide dismutase was decreased in these animals. Daily injection of Cu-Zn superoxide dismutase conjugated with polyethylene glycol (SOD-PEG) prevented the serum and pancreatic changes, indicating that superoxide radical is an important intermediate to high dietary carbohydrate lesion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: To physiologically reconstruct the biliary tract, Crema et al suggested the application of the Monti principle to the biliary tract, already used in humans for the urinary tract. With this technique, a jejunal segment is transversely retubularized. This study aimed to evaluate the efficacy of jejunal tube interposition between the common bile duct and duodenum in dogs.METHODS: Thirteen dogs underwent a laparoscopic common bile duct ligature, followed by a biliodigestive connection by jejunal tube interposition after one week. The levels of glutamic-pyruvic and glutamic-oxalacetic transaminases, total bilirubins, alkaline phosphatase and gamma-glutamyltransferase were assessed before surgery and thereafter weekly until euthanasia, which was performed 6 weeks after biliodigestive connection.RESULTS: Data on 9 dogs were analyzed statistically. The dogs presented with obstructive jaundice after common bile duct ligature, as confirmed by biochemical examination. They showed a statistically significant reduction in cholestasis after biliodigestive connection by jejunal tube interposition and were healthy until the end of the experiment.CONCLUSION: A statistically significant reduction was seen in total bilirubin and canalicular enzymes (alkaline phosphatase and gamma-glutamyltransferase) in the 9 dogs 6 weeks after biliodigestive conviction by jejunal tube interposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition to diets that are high in saturated fat and sugar has caused a global public health concern as the pattern of food consumption is a mayor modifiable risk factor for chronic non-communicable diseases Although agri food systems are intimately associated with this transition, agriculture and health sectors are largely disconnected in their priorities policy, and analysis with neither side considering the complex inter relation between agri trade patterns of food consumption health, and development We show the importance of connection of these perspectives through estimation of the effect of adopting a healthy diet on population health, agricultural production trade the economy and livelihoods, with a computable general equilibrium approach on the basis of case studies from the UK and Brazil we suggest that benefits of a healthy diet policy will vary substantially between different populations, not only because of population dietary intake but also because of agricultural production trade and other economic factors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q(10) (CoQ(10)) has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP). The property of CoQ(10) to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ(10) has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ(10) before exposing patients to unnecessary health risks at significant costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, World Health Organization ( WHO) and Medicins San Frontieres (MSF) proposed a classification of diseases as global, neglected and extremely neglected. Global diseases, such as cancer, cardiovascular and mental (CNS) diseases represent the targets of the majority of the R&D efforts of pharmaceutical companies. Neglected diseases affect millions of people in the world yet existing drug therapy is limited and often inappropriate. Furthermore, extremely neglected diseases affect people living under miserable conditions who barely have access to the bare necessities for survival. Most of these diseases are excluded from the goals of the R&D programs in the pharmaceutical industry and therefore fall outside the pharmaceutical market. About 14 million people, mainly in developing countries, die each year from infectious diseases. From 1975 to 1999, 1393 new drugs were approved yet only 1% were for the treatment of neglected diseases [ 3]. These numbers have not changed until now, so in those countries there is an urgent need for the design and synthesis of new drugs and in this area the prodrug approach is a very interesting field. It provides, among other effects, activity improvements and toxicity decreases for current and new drugs, improving market availability. It is worth noting that it is essential in drug design to save time and money, and prodrug approaches can be considered of high interest in this respect. The present review covers 20 years of research on the design of prodrugs for the treatment of neglected and extremely neglected diseases such as Chagas' disease ( American trypanosomiasis), sleeping sickness ( African trypanosomiasis), malaria, sickle cell disease, tuberculosis, leishmaniasis and schistosomiasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of tetracaine on Ca-45 efflux, cytoplasmic Ca2+ concentration [Ca2+](i), and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the Ca-45 efflux from isolated islets in a dose-dependant manner. Tetracaine did not affect the increase in Ca-45 efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+](i) in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 mu M D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 mu M thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in Ca-45 efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Augmented glucose-stimulated insulin secretion (GSIS) is an adaptive mechanism exhibited by pancreatic islets from insulin-resistant animal models. Gap junction proteins have been proposed to contribute to islet function. As such, we investigated the expression of connexin 36 (Cx36), connexin 43 (Cx43), and the glucose transporter Glut2 at mRNA and protein levels in pancreatic islets of dexamethasone (DEX)-induced insulin-resistant rats. Study rats received daily injections of DEX (1 mg/kg body mass, i.p.) for 5 days, whereas control rats (CTL) received saline solution. DEX rats exhibited peripheral insulin resistance, as indicated by the significant postabsorptive insulin levels and by the constant rate for glucose disappearance (K-ITT). GSIS was significantly higher in DEX islets (1.8-fold in 16.7 mmol/L glucose vs. CTL, p < 0.05). A significant increase of 2.25-fold in islet area was observed in DEX vs. CTL islets (p < 0.05). Cx36 mRNA expression was significantly augmented, Cx43 diminished, and Glut2 mRNA was unaltered in islets of DEX vs. CTL (p < 0.05). Cx36 protein expression was 1.6-fold higher than that of CTL islets (p < 0.05). Glut2 protein expression was unaltered and Cx43 was not detected at the protein level. We conclude that DEX-induced insulin resistance is accompanied by increased GSIS and this may be associated with increase of Cx36 protein expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High protein content in the diet during childhood and adolescence has been associated to the onset insulin-dependent diabetes mellitus. We investigated the effect of interleukin-1 beta (IL-I beta) on insulin secretion, glucose metabolism, and nitrite formation by islets isolated from rats fed with normal protein (NP, 17%) or low protein (LP, 6%) after weaning. Pretreatment of islets with IL-1 beta for 1 h or 34 h inhibited the insulin secretion induced by glucose in both groups, but it was less marked in LP than in NP group. Islets from LP rats exhibited a decreased IL-1 beta -induced nitric oxide (NO) production, lower inhibition of D-[(UC)-C-14]-glucose oxidation to (CO2)-C-14, and less pronounced effect of IL-1 beta on alpha -ketoisocaproic acid-induced insulin secretion than NP islets. However, when the islets were stimulated by high concentrations of K+ the inhibitory effect of IL-1 beta on insulin secretion was not different between groups. In conclusion, protein restriction protects beta -cells of the deleterious effect of IL-1 beta, apparently, by decreasing NO production. The lower NO generation in islets from protein deprived rats may be due to increased free fatty acids oxidation and consequent alteration in Ca2+ homeostasis. (C) 2001 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of dexamethasone (Dex) on the metabolic parameters, peripheral insulin, and glucose sensitivity in vivo as well as on islet function ex vivo of rats submitted to low-protein diet were analyzed. Dexamethasone (1.0 mg/kg body weight) was administered intraperitoneally daily to adult Wistar rats fed on a normal-protein diet or low-protein diet (LPD) for 5 days, whereas control rats fed on a normal-protein diet or low-protein diet (LP) received saline alone. At the end of the experimental period, LP rats showed a significant reduction in serum insulin, total serum protein, and serum albumin levels compared with rats fed on a normal-protein diet (P < .05). All these parameters tended to be normalized in LPD rats (P < .05); furthermore, these rats exhibited increased serum glucose and nonesterified fatty acid levels compared with LP rats (P < .05). Rats submitted to the low-protein diet demonstrated normal peripheral glucose sensitivity and improved peripheral insulin sensitivity, which was reversed by Dex treatment. A reduced area of islets from LP rats was partially recovered in LPD rats (P < .05). At 16.7 mmol/L glucose, insulin secretion from LPD islets was also partially recovered and was significantly higher than that from LP islets (P < .05). In conclusion, induction of insulin resistance by Dex treatment reverses most of the metabolic alterations in rats submitted to a low-protein diet. In addition, several islet functions were also improved by Dex, confirming the plasticity of pancreatic islets in adverse conditions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that glucocorticoids induce peripheral insulin resistance in rodents and humans. Here, we investigated the structural and ultrastructural modifications, as well as the proteins involved in beta-cell function and proliferation, in islets from insulin-resistant rats. Adult male Wistar rats were made insulin resistant by daily administration of dexamethasone (DEX; 1mg/kg, i.p.) for five consecutive days, whilst control (CTL) rats received saline alone. Structure analyses showed a marked hypertrophy of DEX islets with an increase of 1.7-fold in islet mass and of 1.6-fold in islet density compared with CTL islets (P < 0.05). Ultrastructural evaluation of islets revealed an increased amount of secreting organelles, such as endoplasmic reticulum and Golgi apparatus in DEX islets. Mitotic figures were observed in DEX islets at structural and ultrastructural levels. Beta-cell proliferation, evaluated at the immunohistochemical level using anti-PCNA (proliferating cell nuclear antigen), showed an increase in pancreatic beta-cell proliferation of 6.4-fold in DEX islets compared with CTL islets (P < 0.0001). Increases in insulin receptor substrate-2 (IRS-2), phosphorylated-serine-threonine kinase AKT (p-AKT), cyclin D(2) and a decrease in retinoblastoma protein (pRb) levels were observed in DEX islets compared with CTL islets (P < 0.05). Therefore, during the development of insulin resistance, the endocrine pancreas adapts itself increasing beta-cell mass and proliferation, resulting in an amelioration of the functions. The potential mechanisms that underlie these events involve the activation of the IRS-2/AKT pathway and activation of the cell cycle, mediated by cyclin D(2). These adaptations permit the maintenance of glycaemia at near-physiological ranges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)