67 resultados para PULP AND PAPER INDUSTRY
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Cellulose nanocrystals have been evaluated as reinforcement material in polymeric matrices due to their potential to improve the mechanical, optical, and dielectric properties of these matrixes. This work describes how high pressure defibrillation and chemical purification affect the sludge fiber morphology from micro to nanoscale. Microscopy techniques and X-ray diffraction were used to study the structure and properties of the prepared nanofibers and composites. Microscopic studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of sludge fibers. The nanofibers are bundles of cellulose fibers having widths (5 to 30 nm) and estimated lengths of several micrometers.
Resumo:
The motility of Spirillum volutans was used for monitoring the toxicity of effluents of a cellulose and paper industry. Results indicated that there was no correlation between organic content and the toxic effects of the residues in the effluents. The effluents from the chlorination step and from the sludge ponds presented the highest toxicity. on the other hand, the final effluent from the biological treatment basin had no toxic agent. This bioassay showed to be a simple and reliable technique that can be used for adequately monitoring the toxicity of effluents.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The new market, focused on sustainability and other environmental concerns, refers to innovations that seek alternative forms of production. In pulp and paper bleaching alternative reagents are studied, for example, hydrogen peroxide, in partial substitution of chlorine dioxide in order to reduce the formation of organochlorines. In this context, this study examined the burden of hydrogen peroxide (H2O2) on alkaline extraction stage (stage Ep) required for the bleaching of pulp with eucalyptus kraft pulp, pre-oxygen delignified to obtain equivalent brightness at 90 ± 0.5% ISO, as well as its effect on quality of pulp produced. The pulp was bleached by the sequence D(Ep)DP, with the application of factor kappa of 0.14 and varying the concentration of hydrogen peroxide in Ep stage three, five, seven and nine kilograms of reagent per ton of pulp absolutely drought. The final P stage was optimized with the use of six, nine and twelve pounds of hydrogen peroxide per ton of absolutely dry pulp to achieve the required brightness. The quality of the pulp produced was analyzed based on the kappa number, the brightness and the viscosity. The methods were performed according to standards set by the standard TAPPI (Technical Association of the Pulp and Paper Industry). The best result was obtained using the following D0Ep(7)D1P(6), which showed a viscosity of 19.9 cP, 89.6% ISO brightness, consumption of 94.9 kg / t of reagents and reagent costs of US$ 28.15, because it showed better pulp quality for a lower cost compared to the others. It was found that the greater the amount of hydrogen peroxide in alkaline extraction, the lower the kappa number and increased the amount of residual hydrogen peroxide. The higher the charge of hydrogen peroxide in Ep stage, the lower the need for hydrogen peroxide in the final P stage, reducing the cost of bleaching
Resumo:
The search for a more aware use of available raw materials has led to a need to create more sustainable products. The use of natural fibers to reinforce cement, for instance, has been widely studied in the past decades because of the possibility that they can improve material properties such as thermal resistance and to compression, besides conferring a decrease in their total weight. This present study aimed at to conduct preliminary studies on the thermal resistance of the composite cement - Cellulose Pulp, using waste from the pulp and paper industry. Through experiments, it was found that the composite manufactured using the ratio 30 % Portland cement and 70 % pulp, showed satisfactory results regarding its thermal resistance, so it could be considered as a potential thermal insulation material, for use in constructions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study aimed to compare the attractiveness of industrial citrus pulp with the handmade orange albedo to the workers of Atta sexdens rubropilosa. For this, filter paper fragments were impregnated with organic extracts obtained through chemical extraction and sequential fractioning with hexane and dichloromethane and offered to different field nests. It was verified that the industrial citrus pulp extract is as good as the handmade orange albedo extract. This preference is discussed keeping in mind the chemical, behavioral and nutritional factors.
Resumo:
Purpose: To evaluate the influence of the brush type as a earner of priming adhesive solutions and the use of paper points as a remover of the excess of these solutions on the push-out bond strength of resin cement to bovine root dentin. The null hypotheses were that brush type and the use of paper points do not affect the bond strength. Materials and Methods: The canals of 80 single-root bovine roots (16 mm in length) were prepared at 12 mm using the preparation drill (FRC Postec Plus, Ivoclar). Half of each root was embedded in acrylic resin and the specimens were divided into 8 groups, considering the factors brush type (4 levels) and paper point (2 levels) (n = 10): Gr 1: small microbrush (Cavi-Tip, SDI); Gr 2: Microbrush (Dentsply); Gr 3: Endobrush (Bisco); Gr 4: conventional brush (Bisco); Gr 5: Cavi-Tip (SDI) + paper points; Gr 6: Microbrush (Dentsply) + paper points; Gr 7: Endobrush (Bisco) + paper points; Gr 8: conventional brush (Bisco) + paper points. The root dentin was treated with a multistep total-etch adhesive system (All Bond 2). The adhesive system was applied using each microbrush, with and without using paper points. One fiber post was molded with addition silicon and 80 posts were made of resin cement (Duolink), The resin posts were luted (Duolink resin cement), and the specimens were stored for 24 h in water at 37°C. Each specimen was cut into 4 disk-shaped samples (1.8 mm in thickness), which were submitted to the push-out test. Results: The brush type (p < 0.0001) (small microbrush > microbrush = endobrush = conventional brush) and the use of paper points (p = 0.0001) (with > without) influenced the bond strength significantly (two-way ANOVA). The null hypotheses were rejected. Conclusion: The smallest brush (Cavi-Tip) and the use of paper points significantly improved the resin bond to bovine root dentin.
Resumo:
Kraft pulp produced from juvenile and mature wood from thirty-two-year-old Corymbia citriodora trees was evaluated. The stem was subdivided into regions of juvenile and mature wood, and then it was transformed into chips. These materials were then cooked in the Laboratory of Pulp and Paper at São Paulo State University (UNESP, Botucatu, SP, Brazil) and the physico-mechanical properties of the pulps were determined. The results showed that: (1) the pulp yields of mature wood were up to 4.4% greater in comparison to the juvenile wood, (2) the juvenile wood pulp required a shorter refining time than mature wood to reach the same Schopper-Riegler degree, (3) the juvenile wood pulp presented lower specific volume, and (4) the mature wood pulp presented greater air resistance, tensile, tear and burst index values, stress-strain factor, and stretch than the juvenile wood pulp.
Resumo:
In order to cooperate in minimizing the problems of the current and growing volume of waste, this work aim at the production of panels made from industrial waste -thermoplastic (polypropylene; polyethylene and acrylonitrile butadiene styrene) reinforced with agro-industrial waste - peach palm waste (shells and sheaths). The properties of the panels like density, thickness swelling, water absorption and moisture content were evaluated using the ASTM D1037; EN 317; and ANSI A208.1 standards regarding particle boards. Good results were obtained with formulations of 100% plastic waste; 70% waste plastics and 30% peach palm waste; and 60% waste plastics and 40% peach palm waste.
Resumo:
Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 A degrees C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0-5.5. They were stable in the pH range 5.0-10.0 and 5.5-8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55C and 60 A degrees C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 A degrees C.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)