172 resultados para PRINTED CARBON ELECTRODE
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes an electroanalytical method for determining gold(I) thiomalate, aurothiomalate, widely used for treatment of reumatoid arthiritis, using a screen-printed carbon electrode (SPCE). Aurothiomalate (AuTM) was determined indirectly at the same electrode by accumulating it first at -1.5 V vs. printed carbon. At this potential in the adsorbed state, the AuTM is reduced to Au(0), which is then oxidized at two steps at -0.22 V and +0.54 V on SPCE. Using optimized conditions of 60 s deposition time, -1.5 V (vs. printed carbon) accumulation potential, 100 mV s(-1) scan rate, linear calibration graphs can be obtained by monitoring the peak at +0.54 V for AuTM in HCl 0.1 mol L-1 from 1.43 x 10(-6) to 1.55 x 10(-4) mol L-1. A limit of detection obtained was 6.50 x 10(-7) mol L-1, and the relative standard deviation from five measurements of 3.0 x 10(-5) mol L-1 AuTM is 4.5%. The method was successfully applied for AuTM determination in human urine sample.
Resumo:
A rapid and simple method for procaine determination was developed by flow injection analysis (FIA) using a screen-printed carbon electrode (SPCE) as amperometric detector. The present method is based on the amine/hydroxylamine oxidation from procaine monitored at 0.80 V on SPCE in sodium acetate solution pH 6.0. Using the best experimental conditions assigned as: pH 6.0, flow rate of 3.8 mL min(-1), sample volume of 100 mu L and analytical path of 30 cm it is possible to construct a linear calibration curve from 9.0 x 10(-6) to 1.0 x 10(-4) mol L-1. The relative standard deviation for 5.0 x 10(-5) mol L-1 procaine (15 repetitions using the same electrode) is 3.2% and detection limit calculated is 6.0 x 10(-6) mol L-1. Recoveries obtained for procaine gave a mean values from 94.8 to 102.3% and an analytical frequency of 36 injections per hour was achieved. The method was successfully applied for the determination of procaine in pharmaceutical formulation without any pre-treatment, which are in good accordance with the declared values of manufacturer and an official method based on spectrophotometric analysis. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The present work reports the use of a screen-printed carbon electrode (SPCE) modified by poly-L-histidine film to determine chromium (VI). Stable films can be formed by direct addition of PH solution 1 % (w/v) on the electrode surface, followed by heating at 80°C during 5 min. Calibration curves can be constructed for Cr(VI) from 1.0 × 10-5 mol L-1 to 7.0 × 10-5 mol L-1 Cr (VI) in acetate buffer pH 4 using a preconcentration step of 60s at open circuit potential. A relative standard deviation of 3.2% was for five determination of 4.0 × 10 -5 mol L-1 Cr (VI). The method was successful applied to determination of Cr(VI) in wastewater samples from a leather dyeing industry. copyright The Electrochemical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The electrochemical redox behavior of usnic acid, mainly known for its antibiotic activity, has been investigated using cyclic, differential pulse and square wave voltammetry in aqueous electrolyte. These studies were carried out by solid state voltammetry with the solid mechanically attached on the surface of a glassy carbon electrode and at different pH values. Usnic acid did not present any reduction reaction. The pH-dependent electrochemical oxidation occurs in three steps, one electron and one proton irreversible processes, assigned to each of the hydroxyl groups in the molecule. Adsorption of the non-electroactive oxidation product was also observed, blocking the electrode surface. An oxidation mechanism was proposed and electroanalytical methodology was developed to determine usnic acid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)