83 resultados para PORE-SIZE

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica gels were preparated from fixed proportion mixtures of tetraethoxysilane, water and hydrocloric acid, using either ultrasound stimulation (US) or conventional method (CO) in the hydrolysis step of the process. Wet gets were obtained with the same silica volume concentration and density. According to small-angle X-ray scattering, the structure of the wet gels can be described as mass fractal structures with mass fractal dimension D = 2.20 in a length scale xi = 7.9 nm, in the case of wet gels US, and D = 2.26 in a length scale 6.9 nm, in the case of wet gels CO. The mass fractal characteristics of the wet gels US and CO account for the different structures evolved in the drying of the gels US and CO in the obtaining of xerogels and aerogels. The pore structure of the dried gels was studied by nitrogen adsorption as a function of the temperature. Aerogels (US and CO) present high porosity with pore size distribution (PSD) curves in the mesopore region while xerogels (US and CO) present minor porosity with PSD curves mainly in the micropore region. The dried gels US (aerogels and xerogels) generally present pore volume and specific surface area greater than the dried gels CO. The mass fractal structure of the aerogels has been studied from an approach based on the PSD curves exclusively. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we applied mercury porosimetry for the investigation of soybean seed coats. By using this method it was possible to determine the pore size distribution and also the pore size dispersion that is present in seed coats. The results showed that for the studied soybean genotype the seed coats had a characteristic pore diameter, but deviation of this size was not negligible. Finally, the results were confirmed by electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we apply the mercury porosimetry technique to determine the pore size distribution in soybean seed coats of different varieties. The analyses show that the porosity of soybean seed coats is different when seeds of different genotypes are compared. This result points the possibility of using pore size distribution to varietal discrimination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unsupported SnO2 membranes were prepared by sol-gel process and characterized by N2 adsorption-desorption isotherms and X-ray diffraction. Results show that the texture of dried samples does not change appreciably with the concentration of electrolyte. All of the pore size range used in ultrafiltration process was screened using sintering temperature between 300 and 700°C. © 1994 Kluwer Academic Publishers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Supported ceramic membranes have been produced by the sol-casting procedure from aqueous colloidal suspensions prepared by the sol-gel route. Coatings on a tubular alumina support have been successfully performed leading to crack free layers. Samples have been sintered at 400, 500 and 600 degreesC, and the effect of heating treatment on the nanostructure and on the ultrafiltration properties are analyzed. The characterization has been done by high resolution scanning electron microscopy, nitrogen adsorption-desorption isotherms, water permeation and cut-off determination using polyethylene glycol standard solutions. The micrographs have revealed that grains and pore size increase with the temperature, whereas their shape remains invariant. This results is in agreements with N-2 adsorption-desorption analyses, which have revealed that the mean pore size diameter increases from 4 to 10 nm as the sintering temperature increases from 400 to 600 degreesC, while the total porosity remains constant. Furthermore, the tortuosity, calculated from water permeability, is essentially invariant with the sintering temperatures. The membranes cut-off, determined with a retention rate equal to 95%, are 3500, 6500 and 9000 g . mol(-1) for 400, 500 and 600 degreesC, respectively, showing that the permeation properties of SnO2 ultrafiltration membranes can easily be controlled by sintering condition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pore structure of dealuminated kaolin and metakaolin was studied by small-angle X-ray scattering (SAXS). Both parent kaolin and metakaolin have about 10% of the total pore volume provided by globular pores with 105 Å mean pore size. Their surface area is about 14 m2/g. Acid dealumination of kaolin causes an increase of its globular pore volume without an appreciable change in the mean pore size, its surface area increasing up to about 90 m2/g. Acid dealumination of metakaolin enhances the globular pore volume, although there is generation of slit-shaped pores with a narrow thickness distribution whose mean value is 14 Å. This interlayer spacing causes an increase in surface area of about 190 m2/g by SAXS. © 1994.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, the anodic oxide films of Al, Al-Cu 4.5% and Al-Si 6.5% alloys are formed using direct and pulse current. In the case of Al-Cu and Al-Si alloys, the electrolyte used contains sulfuric acid and oxalic acid, meanwhile for Al the electrolyte contains sulfuric acid only. Al-Cu alloy was submitted to a heat treatment in order to decrease the effect of inter metallic phase theta upon the anodic film structure. Fractured samples were observed using a field emission gun scanning electron microscope JSM-6330F at (LME)/Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP, Brazil. The oxide film images enable evaluation of the pore size and form with a resolution similar to the transmission electron microscope (TEM) resolution. It is also observed that the anodizing process using pulse current produces an irregular structure of pore walls, and by direct cur-rent it is produced a rectilinear pore wall. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho foi aplicada a porosimetria de mercúrio na caracterização da porosidade de cascas de ovos de poedeiras com 28 semanas de idade. Aplicando-se a técnica de porosimetria de mercúrio, pudemos descrever as características associadas a porosidade de modo mais amplo, determinando uma distribuição do tamanho de poros nas cascas de ovos estudadas. Nossos resultados mostraram que a maioria dos poros nas cascas de ovos tem tamanhos entre 1 a 10 mim. Neste artigo introduzimos a técnica de porosimetria de mercúrio como uma nova ferramenta aplicada no estudo de cascas de ovos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intensive use of land alters the distribution of the pore size which imparts consequences on the soil physical quality. The Least Limiting Water Range (LLWR) allows for the visualization of the effects of management systems upon either the improvement or the degradation of the soil physical quality. The objective of this study was to evaluate the physical quality of a Red Latosol (Oxisol) submited to cover crops in the period prior to the maize crop in a no-tillage and conventional tillage system, using porosity, soil bulk density and the LLWR as attributes. The treatments were: conventional tillage (CT) and a no-tillage system with the following cover crops: sunn hemp (Crotalaria juncea L.) (NS), pearl millet (Pennisetum americanum (L.) Leeke) (NP) and lablab (Dolichos lablab L.) (NL). The experimental design was randomized blocks in subdivided plots with six replications, with the plots being constituted by the treatments and the subplots by the layers analyzed. The no-tillage systems showed higher total porosity and soil organic matter at the 0-0.5 m layer for the CT. The CT did not differ from the NL or NS in relation to macroporosity. The NP showed the greater porosity, while CT and NS presented lower soil bulk density. No <= 10 % airing porosity was found for the treatments evaluated, and value for water content where soil aeration is critical (theta(PA)) was found above estimated water content at field capacity (theta(FC)) for all densities. Critical soil bulk density was of 1.36 and 1.43 Mg m(-3) for NP and CT, respectively. The LLWR in the no-tillage systems was limited in the upper part by the theta(FC), and in the bottom part, by the water content from which soil resistance to penetration is limiting (theta(PR)). By means of LLWR it was observed that the soil presented good physical quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm.This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)